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Field theory:

In the last few years it has been appreciated that one can put general
(Euclidean) supersymmetric gauge theories on curved backgrounds,
preserving supersymmetry.

In such a theory the VEV of any BPS operator localizes

〈OBPS 〉 =

∫
all fields

e−SOBPS

exactly
=

∫
Q−invariant fields

e−SOBPS · (one-loop determinant) .

A form of fixed point theorem: Q is a supercharge, generating a
supersymmetry variation of the theory.
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For appropriate classes of theories and operators one can compute such
quantities exactly in field theory, on an arbitrary background Md.

Applications include non-perturbative tests of various conjectured dualities.

In particular, if the field theory on (conformally) flat space has an AdS dual, we
may try to compare these computations to gravity.
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Gravity:

There are large classes of supersymmetric gauge theories that, in a suitable
large N limit, are conjectured to be described by the supergravity limit of
string/M-theory.

Typically described by a (warped) product AdSd+1 × Y, where different
choices of internal space Y correspond to different gauge theories, and N =
flux quantum number.

We must then solve a supergravity filling problem in Euclidean quantum
gravity: find the (least action) solution on some Md+1 such that
∂Md+1 = Md.

I will summarize results for d = 3 and d = 5.
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One can put an arbitrary N = 2 supersymmetric gauge theory in d = 3
dimensions on a (Euclidean) curved background following [Festuccia-Seiberg]:
couple the theory to d = 3 supergravity, and take a rigid limit in which
mPlanck →∞ [Closset-Dumitrescu-Festuccia-Komargodski].

As well as the background metric on M3, there are two background vector fields
A and V, and a scalar function h, together with Killing spinor χ satisfying

(∇µ − iAµ)χ = − i
2
hγµχ− iVµχ− 1

2
εµνρVνγρχ .

Of central importance for us is the Killing vector

K = χ†γµχ∂µ = ∂ψ .
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The vector field K is nowhere zero, generating a foliation of M3 which is
transversely holomorphic. The metric is locally

ds2
3 = Ω(z, z̄)2(dψ + a)2 + c(z, z̄)2dzdz̄ .

where z is a complex coordinate.

Essentially the background is parametrized by an arbitrary choice of the functions
Ω(z, z̄), c(z, z̄), and local one-form a = a(z, z̄)dz + c.c., and imposing the
Killing spinor equation then fixes everything else in terms of these.
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If all the orbits of K close then M3 is the total space of a U(1) orbibundle over
an orbifold Riemann surface Σ (a Seifert fibred 3-manifold).

On the other hand, if at least one orbit is open then M3 necessarily admits a
U(1)× U(1) isometry, and we may write

K = ∂ψ = b1∂ϕ1 + b2∂ϕ2 ,

where b1, b2 6= 0 can be thought of as parametrizing a choice of K.
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General N = 2 supersymmetric gauge theory in d = 3 dimensions:

Vector multiplet (A , σ, λ,D) in the adjoint of the gauge group G, for
which we may write a Chern-Simons, as well as Yang-Mills, action.

Matter chiral multiplet (φ, ψ, F) in a representation R of G, with
superpotential.

The localization computation for this general set-up is in our paper [1307.6848].
One first determines the Q-invariant field configurations, and then computes the
one-loop determinants around these.
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In the vector multiplet we find the localization equations for M3
∼= S3 imply

A = 0 , Ωσ = σ0 = constant , D = −
h

Ω
σ0 .

The matter multiplet is trivial: all fields localize to zero.

The classical action for M3
∼= S3, evaluated on the localization locus, is given

entirely by the Chern-Simons action:

SCS = −
ik

2π
Tr(σ2

0)

∫
M3

h

Ω2

√
det g d3x =

iπk

|b1b2|
Tr(σ2

0) .

Most of the work is in computing the one-loop determinants.
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The final result for the partition function is

Z =

∫
dσ0 e

− iπk
|b1b2|

Trσ2
0
∏
α∈∆+

4 sinh
πσ0α

|b1|
sinh

πσ0α

|b2|

·
∏
ρ

sβ

[
i(β + β−1)

2
(1− R)−

ρ(σ0)√
|b1b2|

]
.

Here we have defined β =
√
|b1/b2|, ρ denote weights in a weight space

decomposition of the representation R for the matter fields, R is their R-charge,
and sβ(z) denotes the double sine function.
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It is also straightforward to insert BPS operators, for example the Wilson loop

W = TrR

[
P exp

∫
γ

ds(iAµẋµ + σ|ẋ|)
]
,

where xµ(s) parametrizes with worldline γ = orbit of K, is Q-invariant.

〈W 〉 is then computed by inserting TrRe
2π`σ0 into the localized partition

function, where 2π` = length of Reeb orbit (e.g. at the “pole” where ∂ϕ1 = 0,
` = 1/|b2|) [Farquet-JFS].
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For comparison with AdS/CFT we should focus on field theories that in
(conformally) flat space have an AdS gravity dual.

There are huge classes of these, described by Chern-Simons-quiver gauge theories,
with U(N)p gauge groups, e.g. the maximally supersymmetric case is the ABJM
theory, living on N M2-branes in flat space.

The gravity duals are M-theory backgrounds of the form AdS4×Y7, with N units
of ∗G4 through the internal space Y7, and arise as e.g. near-horizon limits of N
M2-branes at Calabi-Yau four-fold singularities [Martelli-JFS, many other authors].
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The large N limit of the matrix model partition function was computed in
[Martelli-Passias-JFS], using a saddle point method of
[Herzog-Klebanov-Pufu-Tesileanu].

This involves the asymptotic expansion of the double sine function, and an ansatz
for the saddle point eigenvalue distribution for σ0.

The final results are extremely simple:

log Z =
(|b1|+ |b2|)2

4|b1b2|
· log Zround S3 ,

log〈W 〉 = 1
2
`(|b1|+ |b2|) · log〈W 〉round S3 .

In particular, the dependence on the background geometry factorizes from the
dependence on the choice of gauge theory.
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In [1404.0268] and [1406.2493] we have reproduced these formulas from a dual
Euclidean quantum gravity calculation, for a very general class of solutions.

We work in N = 2 gauged supergravity in four dimensions. This is
Einstein-Maxwell theory, with a graviphoton A, and we use the fact that any
supersymmetric solution of this theory on M4 uplifts to a supersymmetric solution
of M-theory on M4 × Y7 [Gauntlett-Varela].

The Killing spinor equation takes the form[
∇µ − iAµ + 1

2
Γµ + i

4
FνρΓ νρΓµ

]
ε = 0 .
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The local form of Euclidean supersymmetric solutions to this theory was studied
by [Dunajski-Gutowski-Sabra-Tod].

In particular, there is a class of self-dual solutions in which ∗4F = −F is
anti-self-dual, and the four-metric is then Einstein with anti-self-dual Weyl tensor.

We also have a Killing vector

K = iε†ΓµΓ5ε∂µ = ∂ψ .
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Self-dual Einstein metrics with a Killing vector have a rich geometric structure.
They are (locally) conformal to a scalar-flat Kähler metric, with the metric
determined entirely by a solution to the Toda equation:

ds2
4 =

1

y2
ds2

Kahler =
1

y2

[
V−1(dψ + φ)2 + V(dy2 + 4ewdzdz̄)

]
.

where V = 1− 1
2
y∂yw, the expression for dφ is known (but complicated), and

∂z∂z̄w + ∂2
ye

w = 0 .
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The conformal boundary is at y = 0, and one can show that the structure
induced on the conformal boundary is precisely the three-dimensional background
geometry of [Closset-Dumitrescu-Festuccia-Komargodski].

In particular

ε = y−1/2

[(
1 + Γ0 + 1

4
yw(1)Γ0

) ( χ
0

)
+O(y2)

]
,

where χ is a three-dimensional spinor satisfying the Killing spinor equation we
saw earlier, and we expand w(y, z, z̄) = w(0)(z, z̄) + yw(1)(z, z̄) +O(y2).
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Suppose we have such a solution. The holographic free energy is

− log Zgravity = SEinstein−Maxwell + SGibbons−Hawking + Scounterterms .

The individual terms certainly depend on the detailed solution. For example

1

16πGN

∫
B4

F2
√

det g d4x = −
π(|b1 + b2|)2

8GN|b1b2|

+
1

256πGN

∫
M3

(
3w3

(1) + 4w(1)w(2)

)√
det g3 d

3x .

Here we have assumed the topology M3
∼= S3 and M4

∼= B4.
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However, the final result is

− log Zgravity =
(|b1|+ |b2|)2

4|b1b2|
·
π

2GN

,

agreeing with the field theory computation!

The Wilson loop in the fundamental representation maps to a supersymmetric
M2-brane, wrapping a calibrated copy of the M-theory circle [Farquet-JFS], and
with a minimal surface Σ ⊂ B4 with ∂Σ = γ = orbit of Reeb vector K.

log〈W 〉gravity is identified with minus the regularized action of the M2-brane,
and in [1406.2493] we showed this reproduces the large N field theory result.
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We now change focus to d = 5. [Imamura] has defined five-dimensional
supersymmetric gauge theories on the SU(3)× U(1)-invariant squashed
five-sphere background

ds2
5 =

1

s2
(dτ + C)2 + ds2

CP2

where 1
2
dC = ω = Kähler form for the Fubini-Study metric on CP2. Here s =

squashing parameter, with s = 1 the round five-sphere.

There is also a background R-symmetry gauge field

AR =
1

s2
(1 + Q

√
1− s2)

√
1− s2(dτ + C) ,

where U(1)R ⊂ SU(2)R and Q = 1, Q = −3 give rise to 3/4 BPS and 1/4
BPS solutions, respectively.
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The perturbative partition function again localizes onto an integral over the
constant mode σ0 of the scalar in the vector multiplet, and the final formula
involves triple sine functions.

A particular class of five-dimensional gauge theories, with gauge group USp(2N)
and arising from a D4-D8 system, is expected to have a large N description in
terms of massive type IIA supergravity [Ferrara-Kehagias-Partouche-Zaffaroni],
[Brandhuber-Oz].

In [Jafferis-Pufu] the large N limit of the partition function of these theories on
the round sphere was computed and successfully compared to the entanglement
entropy of the dual warped AdS6 × S4 supergravity solution.
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In [1405.7194] we computed the large N limit of the USp(2N) gauge theories on
the squashed five-sphere, finding the free energy

log Z =
(|b1|+ |b2|+ |b3|)3

27|b1b2b3|
· log Zround S5 ,

where

{
b1 = b2 = b3 1/4 BPS

b1 = −1−
√

1− s2 , b2 = b3 = 1−
√

1− s2 3/4 BPS

There is again a supersymmetric Killing vector bilinear K, and embedding
S5 ⊂ R2 ⊕ R2 ⊕ R2, this is K = b1∂ϕ1 + b2∂ϕ2 + b3∂ϕ3 .
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We also computed the large N limit of BPS Wilson loops. If the worldline wraps
the S1

i ⊂ S5 at the origin of two copies of R2, then we find

log〈W 〉 =
|b1|+ |b2|+ |b3|

3|bi|
· log〈W 〉round S5 .

We have reproduced these formulae from a dual supergravity computation.

We work in six-dimensional Romans F(4) gauged supergravity, which is a
consistent truncation of massive IIA supergravity on S4 [Cvetic-Lu-Pope]. As well
as the metric, there is a scalar X, two-form potential B, one-form potential A,
and an SO(3) ∼ SU(2) R-symmetry gauge field AI, I = 1, 2, 3.
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The one-form A is a Stueckelberg field, which may be set to A = 0 by a gauge
transformation. The B-field then becomes massive, and the Euclidean action is

Sbulk = −
1

16πGN

∫
M6

[
R ∗ 1− 4X−2dX ∧ ∗dX

−
(

2
9
X−6 − 8

3
X−2 − 2X2

)
∗ 1− 1

2
X−2

(
4
9
B ∧ ∗B + FI ∧ ∗FI

)
− 1

2
X4H ∧ ∗H− iB ∧

(
2

27
B ∧ B + 1

2
FI ∧ FI

)]
.

Notice the cubic Chern-Simons coupling for B. Its curvature is H = dB.

A solution to the corresponding equations of motion is supersymmetric provided
the Killing spinor equation and dilatino equation hold.
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The squashed five-sphere background has SU(3)× U(1) symmetry, and one
expects this to be preserved by the bulk filling. This leads to the ansatz

ds2
6 = α2(r)dr2 + γ2(r)(dτ + C)2 + β2(r)ds2

CP2 ,

B = p(r)dr ∧ (dτ + C) + 1
2
q(r)dC ,

AI = fI(r)(dτ + C) ,

together with X = X(r).

We have constructed smooth, supersymmetric, asymptotically locally Euclidean
AdS solutions with the topology M6

∼= B6, with conformal boundary the
squashed five-sphere backgrounds of [Imamura]. These may be given as
expansions around the conformal boundary r =∞, and/or as expansions in the
squashing parameter s.
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Reparametrization invariance allows us to set β(r) = 3
√

6r2 − 1/
√

2 to its
AdS6 value, and an SO(3) rotation sets f3(r) = f(r), f1(r) = f2(r) = 0.

For example, for the 3/4 BPS solution the first few terms in the expansion around
r =∞ are

α(r) =
3
√

2
r +

8 + s2

36
√

2s2

1

r3
+ . . . ,

γ(r) =
3
√

3

s
r +
−16 + 7s2

12
√

3s3

1

r
−
−1280 + 1120s2 + 241s4

2592
√

3s5

1

r3
+ . . . ,

X(r) = 1 +
1− s2 − 3

√
1− s2

54s2

1

r2
+

s2
√

1− s2κ

12
(

1− s2 +
√

1− s2
) 1

r3
+ . . . ,

p(r) = −
i
√

2
3

(
s2 + 3

√
1− s2 − 1

)
s3

1

r2
+ . . . ,

q(r) = −
3i
(√

6
√

1− s2
)

s
r +

√
2
3
i
√

1− s2
(

5s2 + 9
√

1− s2 − 5
)

3s3

1

r
+ . . . ,

f(r) =
1− s2 +

√
1− s2

s2
+

2
(
−2 + 2s2 − (2 + s2)

√
1− s2

)
9s4

1

r2
+
κ

r3
+ . . . .
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The parameter κ is uniquely determined by requiring this to extend to a smooth
solution on the ball M6

∼= B6. As an expansion in

δ =
√
−1 + s−1

this is

3
√

3

4
κ = δ +

√
2

3
δ2 +

113

36
δ3 +

25

9
√

2
δ4 +

1127

288
δ5 +

35

9
√

2
δ6 + ...

Similar results hold in the 1/4 BPS case, except here we find a two-parameter
family of solutions, leading to a new supersymmetric squashing of S5. In
particular this includes a one-parameter subfamily of 1/2 BPS solutions.
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As in four dimensions the regularized action is

− log Zgravity = Sbulk + SGibbons−Hawking + Sct .

However, unlike in four dimensions the counterterms Sct had not been computed.

This is a straightforward, but very long, computation. In particular the B-field is
both massive and has a cubic Chern-Simons interaction, which leads to a much
more complicated analysis than for more standard fields.
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Sct =
1

8πGN

∫
∂M6

{[ 4
√

2

3
+

1

2
√

2
R(h)−

1

6
√

2
‖B‖2

h +
3

4
√

2
R(h)ijR(h)ij −

15

64
√

2
R(h)2 −

3

4
√

2
‖FI‖

2
h

+
1

12
√

2
TrhB4 +

5

8
√

2
‖d ∗h B +

i
√

2

3
B ∧ B‖2

h −
1

4
√

2
〈B, dδhB +

i
√

2

3
d ∗h B ∧ B〉h −

1
√

2
‖dB‖2

h

+
4
√

2

3
(1− X)2 −

1
√

2
〈Ric(h) ◦ B, B〉h +

9

32
√

2
R(h)‖B‖2

h −
13

192
√

2
‖B‖4

h

]√
det h d

5x

−
1

4
√

2
B ∧

[
d ∗h dB +

√
2i

3
B ∧ δhB−

2

9
B ∧ ∗h(B ∧ B)

]}
.

Here Ric(h)ij = R(h)ij denotes the Ricci tensor of the boundary metric hij, with
R(h) the Ricci scalar. The inner product of two p-forms ν1, ν2 is defined by

〈ν1, ν2〉h
√

det h d5x = ν1 ∧ ∗hν2, which then also defines the square norm via
‖ν‖2

h = 〈ν, ν〉h. The adjoint δh of d with respect to hij acting on the two-form

B is δhB = ∗hd ∗h B, and we have also defined TrhB4 ≡ B j
i B k

j B l
k B i

l . Finally,

we have defined the p-form (S ◦ ν)i1···ip ≡ S[i1
jν|j|i2···ip], where Sij is any

symmetric 2-tensor, and ν is any p-form.
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Using this we may compute the holographic free energy. For example, for the 3/4
BPS solution we find

Sbulk + SGibbons−Hawking + Sct = −
27π2

4GN

(
1 +

8

3
δ2 +

16
√

2

27
δ3 +

68

27
δ4

+
28
√

2

27
δ5 +

32

27
δ6 + . . .

)
.

This agrees with the field theory result. The BPS Wilson loop maps to a
fundamental string in type IIA, at the “pole” of the internal S4

[Assel-Estes-Yamazaki]. The renormalized string action is

Sstring =

∫
Σ

[
X−2

√
det γ d2x + iB

]
−

3
√

2
length(∂Σ) ,

and also agrees with the large N field theory results.
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