Instantons defined by Lie groups

Simon Salamon

12 August 2014

Hannover

Old references

M.F. Atiyah, D.G. Drinfeld, N.J. Hitchin, Y.I. Manin: Construction of instantons, Phys. Lett. 65A (1978), 185-7
R.S. Ward: Completely solvable gauge field equations in dimension greater than four, Nucl. Phys. B236 (1984), 381-96
M. Mamone Capria, S.M. Salamon: Yang-Mills fields on quaternionic spaces, Nonlinearity 1 (1988) 517-530
R. Reyes Carrión: A generalization of the notion of instanton Differ. Geom. Appl. 8 (1998), 1-20

4-dimensional origins

On an oriented Riemannian 4-manifold,

$$
\Lambda^{2} T^{*} M=\Lambda_{+}^{2} \oplus \Lambda_{-}^{2}
$$

since $\mathfrak{s o}(4)=\mathfrak{s u}(2)_{+} \oplus \mathfrak{s u}(2)_{-}$, and there is an elliptic complex

$$
0 \rightarrow \Omega^{0} \xrightarrow{d} \Omega^{1} \xrightarrow{d-} \Omega_{-}^{2} \rightarrow 0 .
$$

If Q is a principal $\mathrm{SU}(2)$-bundle with self-dual connection A with (so $F=d A+A \wedge A \in \Omega_{+}^{2}$ and $* F=F$) then H^{1} of the complex

$$
0 \rightarrow \Omega^{0}(\operatorname{ad} Q) \longrightarrow \Omega^{1}(\operatorname{ad} Q) \longrightarrow \Omega_{-}^{2}(\operatorname{ad} Q) \rightarrow 0
$$

captures infinitesimal deformations modulo gauge equivalence.
The index is $8 k-3$, and a framed moduli space of dimension $8 k$ is hyperkähler (meaning holonomy $S p(k)$), given by HK quotients $\mathbb{H}^{k(k+3) / 2} / / / O(k) \cong \mu_{\infty}^{-1}(0) / \mathscr{G}[\mathrm{D}]$.

Riemannian G-structures

More generally, for $G \subset S O(n)$, we can write

$$
\Lambda^{2} \cong \mathfrak{s o}(n)=\mathfrak{g} \oplus \mathfrak{g}^{\perp}
$$

Given a G-structure on M (in fact, an $N(G)$-structure) this decomposition passes to 2 -forms.

Definition. In this context, an instanton is a connection (on a bundle over M) whose curvature 2-forms F_{i}^{j} lie in \mathfrak{g}.
Example. If the holonomy reduces to G then the Levi-Civita connection is an instanton because $R_{i j k l}$ belongs to the kernel of

$$
S^{2}(\mathfrak{g}) \subset \mathfrak{g} \otimes \Lambda^{2} \subset \Lambda^{2} \otimes \Lambda^{2} \longrightarrow \Lambda^{4}
$$

On the other hand, the Killing form in $S^{2}(\mathfrak{g})$ maps to a non-zero 4-form unless it represents curvature of a Riemannian symmetric space. So 4-forms arise in abundance!

Hitchin-Kobayashi correspondence

If $G=\mathrm{SU}(n) \subset \mathrm{SO}(2 n)$ so $N(G)=\mathrm{U}(n)$ then

$$
\Lambda^{2}=\left[\left[\Lambda^{2,0}\right]\right] \oplus\left[\Lambda_{0}^{1,1}\right] \oplus\langle\omega\rangle,
$$

and $\mathfrak{g}=\mathfrak{s u}(n) \cong\left[\Lambda_{0}^{1,1}\right]$. An instanton is a connection with $(1,1)$ curvature and vanishing trace $F \wedge \omega^{n-1}$, though this would force $c_{1}=0$. More generally we require that the trace be a (constant) multiple of the identity, the Hermitian-Einstein condition.

Over a complex manifold:

- A connection with $(1,1)$ curvature on a vector bundle renders it a holomorphic bundle [cf. NN].
- A holomorphic bundle admits a unique connection with $(1,1)$ curvature compatible with a given Hermitian metric on its fibres.

Theorem [D,UY]. On a compact Kähler manifold, an irreducible holomorphic vector bundle admits a HE connection iff it is stable.

Using a 3-form

If $G=\mathrm{G}_{2} \subset \mathrm{SO}(7)$ so $N(G)=G$ then

$$
\begin{array}{ll}
\Lambda^{2}=\Lambda_{14}^{2} \oplus \Lambda_{7}^{2} & \cong \mathfrak{g}_{2} \oplus \Lambda^{1} \\
\Lambda^{3}=\Lambda_{27}^{3} \oplus \Lambda_{7}^{3} \oplus\langle\varphi\rangle & \cong S_{0}^{2} \oplus \Lambda^{1} \oplus \mathbb{R}
\end{array}
$$

Example. If $\varphi=(12-34) 5+(13-42) 6+(14-23) 7+567$, we have $12+34,13+24,14+23 \in \Lambda_{+}^{2} \subset \mathfrak{g}_{2}$.
An instanton is characterized by the equivalent equations

$$
F_{7}=0, \quad F \wedge(* \varphi)=0, \quad F \wedge \varphi=* F .
$$

Instantons are YM connections because

$$
c_{2}(F) \cup[\varphi]=\int F \wedge F \wedge \varphi=4\left\|F_{14}\right\|^{2}-18\left\|F_{7}\right\|^{2}
$$

and $\|F\|^{2}$ has an absolute minimum if $F_{7}=0$.

grad, curl, div in dim 7

Suppose that M^{7} has a G_{2} structure. Consider

$$
0 \rightarrow \Omega^{0} \xrightarrow{d} \Omega^{1} \xrightarrow{D_{1}} \Omega_{7}^{2} \xrightarrow{D_{2}} \Omega_{1}^{3} \rightarrow 0
$$

where $D_{1}=\pi_{7} \circ d$ arises from the cross product. It is complex iff

$$
D_{2} \circ D_{1}=0 \Longleftrightarrow d\left(\Omega_{14}^{2}\right) \subseteq\langle\varphi\rangle^{\perp} \Longleftarrow d * \varphi=0 .
$$

Lemma [CN]. If M^{7} is oriented and spin it has a G_{2} structure, indeed one with $d * \varphi=0$.

Given an instanton on a bundle Q, we can extend the operators so $D \circ D=F_{7}=0$ and obtain an elliptic complex

$$
0 \rightarrow \Omega^{0}(\operatorname{ad} Q) \rightarrow \Omega^{1}(\operatorname{ad} Q) \rightarrow \Omega^{1}(\operatorname{ad} Q) \rightarrow \Omega^{0}(\operatorname{ad} Q) \rightarrow 0
$$

whose H^{1} parametrizes infinitesimal deformations. Close analogue with the de Rham complex $1 \rightarrow 3 \rightarrow 3 \rightarrow 1$ over a 3 -manifold.

Integrability

We shall construct a differential complex for any $G \subset \operatorname{SO}(n)$ that begins $0 \rightarrow \Omega^{0} \rightarrow \Omega^{1} \rightarrow \cdots$
Set $\Lambda^{-2}=\Lambda^{-1}=0$ and $A^{k}=\left(\mathfrak{g} \wedge \Lambda^{k-2}\right)^{\perp}$. Define

$$
D: \quad \mathscr{A}^{k} \subset \Omega^{k} \xrightarrow{d} \Omega^{k+1} \xrightarrow{\pi} \mathscr{A}^{k+1} .
$$

Here $\mathscr{A}^{k}=\Gamma\left(M, A^{k}\right)$, so $\mathscr{A}^{k}=\Omega^{k}$ for $k=0,1$.
Proposition. $D^{2}=0$ if only only if $d: \Omega^{2} \rightarrow \Omega^{3}$ maps sections of \mathfrak{g} to those of $\mathfrak{g} \wedge \Lambda^{1}$.
This is obviously true if the holonomy of M lies in $N(G)$; in general it is a condition on the intrinsic torsion $\tau \in \Gamma\left(M, \mathfrak{g} \otimes \Lambda^{1}\right)$. In any case, we would like

$$
0 \rightarrow \mathscr{A}^{0} \rightarrow \mathscr{A}^{1} \rightarrow \mathscr{A}^{2} \rightarrow \cdots \rightarrow 0
$$

to be elliptic. It is when G equals $\operatorname{SU}(n), G_{2}, \operatorname{Spin} 7, \operatorname{Sp}(n), \ldots$

Nearly-Kähler 6-manifolds

If $G=\mathrm{SU}(3)$ so $N(G)=\mathrm{U}(3)$, the complex becomes

$$
0 \rightarrow \Omega^{0} \rightarrow \Omega^{1} \rightarrow \Gamma\left(\left[\left[\Lambda^{2,0}\right]\right] \oplus\langle\omega\rangle\right) \rightarrow \Gamma\left(\left[\left[\Lambda^{3,0}\right]\right]\right) \rightarrow 0 .
$$

with dimensions $1 \rightarrow 6 \rightarrow 7 \rightarrow 2$, provided most of the Nijenhuis tensor vanishes! We get a theory of instantons over nearly-Kähler 6 -manifolds (meaning $\left.\left(\nabla_{X} J\right) X=0\right)$).
Example. The twistor spaces $\mathbb{C P}^{3} \rightarrow S^{4}$ and $\mathbb{F}^{3} \rightarrow \mathbb{C P}^{2}$ both have a $\mathrm{U}(1)$-connection A_{1} whose curvature F_{1} is a Kähler form and another NK 2-form F_{2} such that $F_{2} \wedge F_{2}=d \psi$ with $F_{1} \wedge \psi=0$.

$$
\Longrightarrow 0=d\left(F_{1} \wedge \psi\right)=d F_{1} \wedge \psi+F_{1} \wedge\left(F_{2} \wedge F_{2}\right)=2 F_{1} \wedge\left(* F_{2}\right) .
$$

Thus A_{1} is an instanton for the NK metric.

Quaternionic case

If $G=\operatorname{Sp}(n) \subset \operatorname{SO}(4 n)$ so $N(G)=\operatorname{Sp}(n) \operatorname{Sp}(1)$ and

$$
\begin{aligned}
\left(\Lambda^{1}\right)_{c} & =E \otimes H \quad(\text { cf. } S \otimes \widetilde{S}) \\
\left(\Lambda^{2}\right)_{c} & =S^{2} E \oplus S^{2} H \oplus\left(\Lambda_{0}^{2} E \otimes S^{2} H\right) \\
& \cong \mathfrak{s p}(n) \oplus \mathfrak{s p}(1) \oplus \mathfrak{m}
\end{aligned}
$$

Manifolds $M^{4 n}(n \geqslant 2)$ like $\mathbb{H P}^{n}$ with holonomy in $N(G)$ are quaternion-Kähler and behave as if they were nearly hyperkähler.
Since $S^{2} E=\Lambda_{j}^{1,1} \cap \Lambda_{j}^{1,1} \oplus \Lambda_{K}^{1,1}$, instantons give rise to holomorphic bundles over the twistor space $Z^{2 n+1}$, which fibres over M.

Using a 4-form again, one shows that the Yang-Mills functional has a critical point whenever any 2 of the 3 components vanish.
Not an abs max/min if $F \in \Gamma(M, \mathfrak{m})$, but no examples known.

Instantons via quaternions

Take $M^{4 n}=\mathbb{H} \mathbb{P}^{n}$. Let $\mathbf{q}=\left(q_{0}, q_{1}, \ldots, q_{n}\right) \in \mathbb{H}^{n+1} \backslash 0, m=[\mathbf{q}]$.
A linear form $\sum a_{r} q_{r}\left(\right.$ with $\left.a_{r} \in \mathbb{H}\right)$ defines a section of the tautological line bundle H (fibre $\mathbb{H}=\mathbb{C}^{2}$) inside $\underline{\mathbb{H}}^{n+1}$, and

$$
E_{m}=\operatorname{ker}\left(\mathbf{q}^{\top}: \mathbb{H}^{n+1} \rightarrow H_{m}\right), \quad \text { so } E=H^{\perp}
$$

Take matrices $A_{0}, A_{1}, \ldots, A_{n} \in \mathbb{H}^{n+k, k}$ and set $\mathbb{A}=\sum_{r=0}^{n} A_{r} q_{r}$.
Theorem If $A_{r}^{*} A_{s}$ is symmetric for all r, s and \mathbb{A} has rank k for all $\mathbf{q} \neq 0$ then $\operatorname{ker} \mathbb{A}$ is an $\operatorname{Sp}(n)$ instanton on $\mathbb{H} \mathbb{P}^{n}$.
Proof. Relies on the fact that the real components of

$$
d q_{r} \wedge d \bar{q}_{s}=\left(d u_{r}+j d v_{r}\right) \wedge\left(d \bar{u}_{r}-d \bar{v}_{r} j\right)
$$

span the subspace $\mathfrak{s p}(n)$ of Λ^{2}. Projection to $\operatorname{ker} \mathbb{A}$ equals $\Pi=1-\mathbb{A}\left(\mathbb{A}^{*} \mathbb{A}\right)^{-1} \mathbb{A}^{*}$ and the induced curvature is $\Pi(d \Pi \wedge d \Pi) \Pi$.

The twistor space

\ldots of $\mathbb{H} \mathbb{P}^{n}$ is $\mathbb{C P}^{2 n+1}$, which is the total space of

$$
\begin{gathered}
\mathbb{P}_{c}(H) \\
\downarrow \\
\mathbb{H} \mathbb{P}^{n} .
\end{gathered}
$$

The instantons $F=$ ker \mathbb{A} pull back to holomorphic bundles $\pi^{*} F$ (fibre $\mathbb{C}^{2 n}$) with $c(F)=(1-h)^{-k}$, characterized by

$$
H^{q}\left(\mathbb{C P}^{2 n+1}, \pi^{*} F \otimes \mathscr{O}(p)\right)=0 \quad \begin{cases}q=1, & p \leqslant-2 \\ 2 \leqslant q \leqslant n, & p \in \mathbb{Z} .\end{cases}
$$

Example. For $n=k=2$, we can take $\mathbb{A}=\left(\begin{array}{cc}q_{0} & 0 \\ 0 & q_{0}+q_{2} \\ q_{1} & q_{2} \\ q_{2} & q_{1}\end{array}\right)$.
The deformation complex for $n=1$ has $h^{1}=8 k-3$.
Proposition. If $n=2$ the deformation complex of the instantons above has $h^{1}-h^{2}=\frac{3}{2} k(17-k)-10=14,35,53, \ldots$

4-forms in 8 dims

Many interesting geometries in dim 8 are characterized by 4-forms: elements of $\Lambda^{4}\left(\mathbb{R}^{8}\right)^{*}$, the isotropy representation of the symmetric space $E^{7} / S U(8)$. The complicated orbit structure for $S L(8, \mathbb{R})$ acting on the 4 -forms can be understood via roots of $E_{7}[\mathrm{~V}]$.
We focus on the inclusions

$\operatorname{Sp}(2)$ fixes a triple $\omega_{1}, \omega_{2}, \omega_{3}$, whilst

$$
\begin{array}{lll}
\operatorname{Sp}(2) \operatorname{Sp}(1) & \text { stabilizes } & \Omega=\omega_{1} \wedge \omega_{1}+\omega_{2} \wedge \omega_{2}+\omega_{3} \wedge \omega_{3} \\
\operatorname{Spin} 7 & \text { stabilizes } & \Phi=-\omega_{1} \wedge \omega_{1}+\omega_{2} \wedge \omega_{2}+\omega_{3} \wedge \omega_{3} .
\end{array}
$$

We shall investigate the topology defined by the two rank 3 groups.

Spinors

Proposition. If a compact, oriented M^{8} has a $\operatorname{Spin} 7$ or a $\operatorname{Sp}(2) \operatorname{Sp}(1)$ structure then M is spin and $8 \chi=4 p_{2}-p_{1}^{2}$.
Proof.

$$
\Delta_{+} \cong \begin{cases}\Lambda^{0} \oplus \Lambda_{7}^{2}=1+7 & \text { for } \operatorname{Spin} 7 \\ S^{2} H \oplus \Lambda_{0}^{2} E=3+5 & \text { for } \operatorname{Sp}(2) \operatorname{Sp}(1)\end{cases}
$$

and in both cases $\Delta_{-} \cong \Lambda^{1} \cong T M$. The Euler class e satisfies

$$
\operatorname{ch}\left(\Delta_{+}-\Delta_{-}\right)=e \hat{A}^{-1}=e\left(1-\frac{1}{24} p_{1}+\hat{A}_{2}+\cdots\right)^{-1}
$$

where $\hat{A}_{2}=\frac{1}{5760}\left(7 p_{1}^{2}-4 p_{2}\right)$.
Theorem. If $\operatorname{Hol}(M) \subseteq \operatorname{Sp}(2) \operatorname{Sp}(1)$ and $s>0$ then $\hat{A}_{2}=0$. If $\operatorname{Hol}(M)=\operatorname{Spin} 7$ then $\hat{A}_{2}=1$.
So the QK 8-manifolds $\mathbb{H P}^{2}, G_{2} / S O(4), \mathbb{G r}_{2}\left(\mathbb{C}^{4}\right)$ all admit a Spin 7 structure but not the rival holonomy!

The remarkable space $G_{2} / S O(4)$

- parametrizes coassociative 4-planes in $\mathbb{R}^{7} \subset \mathbb{O}[\mathrm{HL}]$.
- As an application, its orbits under $\mathrm{SO}(4)$ are relevant to the classification of coassociative submanifolds of the G_{2} manifold $\Lambda_{-}^{2}\left(S^{4}\right)$ that are deformations of $T^{*} S^{2}[\mathrm{KS}]$.
- Removing $\mathbb{C P}^{2}$ and quotienting out by \mathbb{Z}_{3}, we get $\mathscr{N} / \mathbb{H}^{*}$, where \mathscr{N} is the principal nilpotent orbit in $\operatorname{sl}(3, \mathbb{C})$. The latter is HK and the quotient QK $[K, S]$.
- There is a construction of QK metrics from 5-manifolds with generic 2-plane distributions that are modelled asymptotically on the noncompact dual $\mathrm{G}_{2}^{s} / \mathrm{SO}(4)[\mathrm{L}, \mathrm{B}, \mathrm{D}]$.

A Dirac complex

If M^{8} has a $\operatorname{Spin} 7$ structure then $\left(\mathscr{A}^{\bullet}, D\right)$ coincides with

$$
0 \rightarrow \Omega^{0} \rightarrow \Omega^{1} \rightarrow \Omega_{7}^{2} \rightarrow 0
$$

Only if it is written backwards do we need the holonomy condition!
It is easy to compute the deformation index

$$
h^{0}-h^{1}+h^{2}=\int \operatorname{ch}(\operatorname{ad} Q) \hat{A}
$$

though h^{2} is again unknown.
Example. For the Levi-Civita instanton Λ^{1} on a manifold with holonomy equal to Spin 7 , it equals $8-\frac{1}{3} \chi$. The latter is an integer because

$$
25+b_{2}+2 b_{4}^{-}=b_{3}+b_{4}^{+} .
$$

Intrinsic torsion

. . . of a $\operatorname{Sp}(2) \operatorname{Sp}(1)$ structure lies in $\Lambda^{1} \otimes \mathfrak{m}=$| $E H$ | $K H$ |
| :---: | :---: |
| $E S^{3} H$ | $K S^{3} H$ | M^{8} is quaternionic if $\tau \in$ row 1 ; it is ideal if $\tau \in \operatorname{col} 1$.

Surprise. $\mathrm{SU}(3)$ possesses invariant structures of both types [J,M].
If M^{8} is quaternionic, there is an elliptic complex

$$
0 \rightarrow \Gamma\left(S^{2} H\right) \rightarrow \Gamma(E H) \rightarrow \Gamma\left(\Lambda_{0}^{2} E\right) \rightarrow 0
$$

which corresponds to the sheaf $\mathscr{O}(-2)$ on the twistor space Z^{5}. Tensor by $S^{2} H$ to obtain $\left(\mathscr{A}^{\bullet}, D\right)$. Passing to $\mathscr{O}(-3)$ gives

$$
0 \rightarrow \Gamma(H) \xrightarrow{\partial} \Gamma(E) \xrightarrow{\square} \Gamma(E) \longrightarrow \Gamma(H) \rightarrow 0
$$

where ∂ is a Fueter operator and \square is second order [B].

Some K theory

Associated to the Dirac operator on $\mathbb{H P}^{2}$ is the virtual vector bundle

$$
\Lambda_{0}^{2}(E-H)=\Lambda_{0}^{2} E-E H+S^{2} H
$$

Now, $E-H$ can't be a genuine vector bundle because:

- any monomorphism $H \rightarrow E$ would define a nowwhere zero section of $E \otimes H \cong T \mathbb{H} \mathbb{P}^{2}$ but $\chi=3$;
- $E-H$ has rank 2, but a calculation shows $c_{4}(E-H) \neq 0$! In fact, $c(H)=1-h$ so

$$
c(E-H)=c\left(\mathbb{C}^{6}-2 H\right)=(1-h)^{-2}=1+2 h+3 h^{2} .
$$

By contrast,

$$
c\left(\Lambda_{0}^{2} E-H\right)=c\left(\Delta_{+}-S^{2} H-H\right)=1-3 h .
$$

We shall see that this time the difference is a vector bundle.

Horrocks's instanton

Theorem. There exists a rank 3 complex vector bundle V over $\mathbb{H}^{2} \mathbb{P}^{2}$ with $c_{2}=3 h$, and an $\mathrm{SU}(3)$-connection with $F \in \Gamma(\mathfrak{s p}(2))$.
Proof. Recall that $E=\operatorname{ker}\left(p_{1}: \mathbb{C}^{6} \rightarrow H\right)$. Similarly,

$$
\Lambda_{0}^{2} E=\operatorname{ker}\left(\Lambda_{0}^{2}\left(\underline{\mathbb{C}}^{6}\right) \longrightarrow \underline{\mathbb{C}}^{6} \wedge H\right)
$$

Fix a reduction of $\operatorname{Sp}(3)$ to $\mathrm{SU}(3)$, giving $\mathbb{C}^{6}=\Lambda^{1,0} \oplus \Lambda^{0,1}$ and

$$
p_{2}: \Lambda_{0}^{2}\left(\mathbb{\mathbb { C }}^{6}\right) \longrightarrow \mathbb{\mathbb { C }}^{6}
$$

Then $p_{1} \circ p_{2}$ has rank 2 everywhere. The instanton connection on $V=\operatorname{ker}\left(p_{1} \circ p_{2}\right)$ is induced from that on $\Lambda_{0}^{2} E$ and ultimately E.
The moduli space of such instantons is then the total space of

$$
\frac{\mathrm{SL}(3, \mathbb{H})}{S U(3)} \longrightarrow \frac{\mathrm{SL}(3, \mathbb{H})}{S p(3)}, \text { whose } T_{o} \cong \Lambda_{0}^{2}\left(\mathbb{C}^{6}\right)
$$

Summary

- In parallel to the theory of manifolds with reduced holonomy, there is a unified theory of instantons (which arguably preceded it in the exceptional cases).
- The quaternionic version of ADHM has many unanswered questions and still open problems [O]. Unlike for G_{2} or Spin 7, there is no rich theory of submanifolds.
- The link between G_{2} and the nearly-Kähler case is striking, especially since it is unknown if there are compact NK manifolds other than the four usual suspects $\left(S^{6}, \mathbb{C P}^{3}, \mathbb{F}^{3}, S^{3} \times S^{3}\right)$.
- More applications are needed of the differential complexes, their cohomology and index theory. A big problem is to determine h^{2}.
- The exceptional cases (NK, G_{2}, Spin 7) suffer from being non-holomorphic theories, with no twistor spaces to retire to. But this did not stop algebraic geometry being used in the construction of new compact manifolds with holonomy G_{2} [CHNP].

