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4-dimensional origins 2
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On an oriented Riemannian 4-manifold,

Λ2T ∗M = Λ2
+
⊕ Λ2

−

since so(4) = su(2)+ ⊕ su(2)−, and there is an elliptic complex

0→ Ω0 dÐ→ Ω1 d−Ð→ Ω2
−
→ 0.

If Q is a principal SU(2)-bundle with self-dual connection A with
(so F = dA +A ∧A ∈ Ω2

+
and ∗F = F ) then H1 of the complex

0→ Ω0(adQ)Ð→ Ω1(adQ)Ð→ Ω2
−
(adQ)→ 0

captures infinitesimal deformations modulo gauge equivalence.

The index is 8k − 3, and a framed moduli space of dimension 8k is
hyperkähler (meaning holonomy Sp(k)), given by HK quotients
Hk(k+3)/2///O(k) ≅ µ−1

∞
(0)/G [D].



Riemannian G-structures 3
19

More generally, for G ⊂ SO(n), we can write

Λ2 ≅ so(n) = g⊕ g⊥.

Given a G -structure on M (in fact, an N(G)-structure) this
decomposition passes to 2-forms.

Definition. In this context, an instanton is a connection (on a
bundle over M ) whose curvature 2-forms F j

i lie in g.

Example. If the holonomy reduces to G then the Levi-Civita
connection is an instanton because Rijkl belongs to the kernel of

S2(g) ⊂ g⊗ Λ2 ⊂ Λ2 ⊗ Λ2 Ð→ Λ4.

On the other hand, the Killing form in S2(g) maps to a non-zero
4-form unless it represents curvature of a Riemannian symmetric
space. So 4-forms arise in abundance!



Hitchin-Kobayashi correspondence 4
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If G = SU(n) ⊂ SO(2n) so N(G) = U(n) then

Λ2 = [[Λ2,0]]⊕ [Λ1,1
0 ]⊕ ⟨ω⟩ ,

and g = su(n) ≅ [Λ1,1
0 ]. An instanton is a connection with (1,1)

curvature and vanishing trace F ∧ ωn−1, though this would force
c1 = 0. More generally we require that the trace be a (constant)
multiple of the identity, the Hermitian-Einstein condition.

Over a complex manifold:
● A connection with (1,1) curvature on a vector bundle renders it
a holomorphic bundle [cf. NN].
● A holomorphic bundle admits a unique connection with (1,1)
curvature compatible with a given Hermitian metric on its fibres.

Theorem [D,UY]. On a compact Kähler manifold, an irreducible
holomorphic vector bundle admits a HE connection iff it is stable.



Using a 3-form 5
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If G = G2 ⊂ SO(7) so N(G) = G then

Λ2 = Λ2
14 ⊕ Λ2

7 ≅ g2 ⊕ Λ1

Λ3 = Λ3
27 ⊕ Λ3

7 ⊕ ⟨ϕ⟩ ≅ S2
0 ⊕ Λ1 ⊕R.

Example. If ϕ = (12− 34)5+ (13− 42)6+ (14− 23)7+ 567, we have
12+34, 13+24, 14+23 ∈ Λ2

+
⊂ g2.

An instanton is characterized by the equivalent equations

F7 = 0, F ∧ (∗ϕ) = 0, F ∧ ϕ = ∗F .

Instantons are YM connections because

c2(F ) ∪ [ϕ] = ∫ F ∧ F ∧ ϕ = 4∥F14∥2 − 18∥F7∥2

and ∥F ∥2 has an absolute minimum if F7 = 0.



grad, curl, div in dim 7 6
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Suppose that M7 has a G2 structure. Consider

0 → Ω0 dÐ→ Ω1 D1Ð→ Ω2
7

D2Ð→ Ω3
1 → 0

where D1 = π7 ○ d arises from the cross product. It is complex iff

D2 ○D1 = 0 ⇐⇒ d(Ω2
14) ⊆ ⟨ϕ⟩⊥ ⇐Ô d ∗ ϕ = 0.

Lemma [CN]. If M7 is oriented and spin it has a G2 structure,
indeed one with d ∗ ϕ = 0.

Given an instanton on a bundle Q, we can extend the operators so
D ○D = F7 = 0 and obtain an elliptic complex

0→ Ω0(adQ)→ Ω1(adQ)→ Ω1(adQ)→ Ω0(adQ)→ 0

whose H1 parametrizes infinitesimal deformations. Close analogue
with the de Rham complex 1→ 3→ 3→ 1 over a 3-manifold.



Integrability 7
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We shall construct a differential complex for any G ⊂ SO(n) that
begins 0→ Ω0 → Ω1 → ⋯
Set Λ−2 = Λ−1 = 0 and Ak = (g ∧ Λk−2)⊥. Define

D ∶ A k ⊂ Ωk dÐ→ Ωk+1 πÐ→ A k+1.

Here A k = Γ(M,Ak), so A k = Ωk for k = 0,1.

Proposition. D2 = 0 if only only if d ∶Ω2 → Ω3 maps sections of g
to those of g ∧ Λ1.

This is obviously true if the holonomy of M lies in N(G); in
general it is a condition on the intrinsic torsion τ ∈ Γ(M,g⊗ Λ1).
In any case, we would like

0→ A 0 → A 1 → A 2 → ⋯→ 0

to be elliptic. It is when G equals SU(n),G2,Spin7,Sp(n), . . .



Nearly-Kähler 6-manifolds 8
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If G = SU(3) so N(G) = U(3), the complex becomes

0→ Ω0 → Ω1 → Γ([[Λ2,0]]⊕ ⟨ω⟩)→ Γ([[Λ3,0]])→ 0.

with dimensions 1→ 6→ 7→ 2, provided most of the Nijenhuis
tensor vanishes! We get a theory of instantons over nearly-Kähler
6-manifolds (meaning (∇X J)X = 0)).

Example. The twistor spaces CP3 → S4 and F3 → CP2 both have
a U(1)-connection A1 whose curvature F1 is a Kähler form and
another NK 2-form F2 such that F2 ∧ F2 = dψ with F1 ∧ ψ = 0.

Ô⇒ 0 = d(F1 ∧ ψ) = dF1 ∧ ψ + F1 ∧ (F2 ∧ F2) = 2F1 ∧ (∗F2).

Thus A1 is an instanton for the NK metric.



Quaternionic case 9
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If G = Sp(n) ⊂ SO(4n) so N(G) = Sp(n)Sp(1) and

(Λ1)c = E ⊗H (cf. S ⊗ S̃)
(Λ2)c = S2E ⊕ S2H ⊕ (Λ2

0E⊗S2H)
≅ sp(n)⊕ sp(1)⊕m.

Manifolds M4n (n ⩾ 2) like HPn with holonomy in N(G) are
quaternion-Kähler and behave as if they were nearly hyperkähler.

Since S2E = Λ1,1
I ∩ Λ1,1

J ⊕ Λ1,1
K , instantons give rise to holomorphic

bundles over the twistor space Z 2n+1, which fibres over M.

Using a 4-form again, one shows that the Yang-Mills functional has
a critical point whenever any 2 of the 3 components vanish.

Not an abs max/min if F ∈ Γ(M,m), but no examples known.



Instantons via quaternions 10
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Take M4n = HPn. Let q = (q0,q1, . . . ,qn) ∈ Hn+1 ∖ 0, m = [q].
A linear form ∑ arqr (with ar ∈ H) defines a section of the
tautological line bundle H (fibre H=C2) inside Hn+1, and

Em = ker (q⊺ ∶ Hn+1 → Hm) , so E = H⊥.

Take matrices A0,A1, . . . ,An ∈ Hn+k,k and set A = ∑n
r=0 Arqr .

Theorem If A∗

r As is symmetric for all r , s and A has rank k for all
q ≠ 0 then kerA is an Sp(n) instanton on HPn.

Proof. Relies on the fact that the real components of

dqr ∧ dqs = (dur + j dvr) ∧ (dur − dv r j)

span the subspace sp(n) of Λ2. Projection to kerA equals
Π = 1 −A(A∗A)−1A∗ and the induced curvature is Π(dΠ ∧ dΠ)Π.



The twistor space 11
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. . . of HPn is CP2n+1, which is the total space of
Pc(H)
↓

HPn.

The instantons F = kerA pull back to holomorphic bundles π∗F
(fibre C2n) with c(F ) = (1 − h)−k , characterized by

Hq(CP2n+1, π∗F ⊗O(p)) = 0 { q = 1, p ⩽ −2
2 ⩽ q ⩽ n, p ∈ Z.

Example. For n = k = 2, we can take A =
⎛
⎜⎜⎜
⎝

q0 0
0 q0+q2

q1 q2

q2 q1

⎞
⎟⎟⎟
⎠
.

The deformation complex for n = 1 has h1 = 8k−3.

Proposition. If n = 2 the deformation complex of the instantons
above has h1 − h2 = 3

2k(17−k) − 10 = 14,35,53, . . .



4-forms in 8 dims 12
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Many interesting geometries in dim 8 are characterized by 4-forms:
elements of Λ4(R8)∗, the isotropy representation of the symmetric
space E 7/SU(8). The complicated orbit structure for SL(8,R)
acting on the 4-forms can be understood via roots of E7 [V].

We focus on the inclusions

Sp(2)
⤤
⤥

Sp(2)Sp(1)

Spin7

?
4

SO(8).

Sp(2) fixes a triple ω1, ω2, ω3 , whilst

Sp(2)Sp(1) stabilizes Ω = ω1 ∧ ω1 + ω2 ∧ ω2 + ω3 ∧ ω3

Spin7 stabilizes Φ = −ω1 ∧ ω1 + ω2 ∧ ω2 + ω3 ∧ ω3.

We shall investigate the topology defined by the two rank 3 groups.



Spinors 13
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Proposition. If a compact, oriented M8 has a Spin7 or a
Sp(2)Sp(1) structure then M is spin and 8χ = 4p2 − p2

1 .

Proof.

∆+ ≅
⎧⎪⎪⎨⎪⎪⎩

Λ0 ⊕ Λ2
7 = 1 + 7 for Spin7

S2H ⊕ Λ2
0E = 3 + 5 for Sp(2)Sp(1)

and in both cases ∆− ≅ Λ1 ≅ TM. The Euler class e satisfies

ch(∆+ −∆−) = e Â−1 = e(1 − 1
24p1 + Â2 +⋯)−1

where Â2 = 1
5760(7p2

1 − 4p2).

Theorem. If Hol(M) ⊆ Sp(2)Sp(1) and s > 0 then Â2 = 0.
If Hol(M) = Spin7 then Â2 = 1.

So the QK 8-manifolds HP2, G2/SO(4), Gr2(C4) all admit a
Spin7 structure but not the rival holonomy!



The remarkable space G2/SO(4) 14
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● parametrizes coassociative 4-planes in R7 ⊂ O [HL].

● As an application, its orbits under SO(4) are relevant to the
classification of coassociative submanifolds of the G2 manifold
Λ2
−
(S4) that are deformations of T ∗S2 [KS].

● Removing CP2 and quotienting out by Z3, we get N /H∗,
where N is the principal nilpotent orbit in sl(3,C). The latter is
HK and the quotient QK [K,S].

● There is a construction of QK metrics from 5-manifolds with
generic 2-plane distributions that are modelled asymptotically on
the noncompact dual Gs

2/SO(4) [L,B,D].



A Dirac complex 15
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If M8 has a Spin7 structure then (A ●,D) coincides with

0→ Ω0 → Ω1 → Ω2
7 → 0.

Only if it is written backwards do we need the holonomy condition!

It is easy to compute the deformation index

h0 − h1 + h2 = ∫ ch(adQ) Â

though h2 is again unknown.

Example. For the Levi-Civita instanton Λ1 on a manifold with
holonomy equal to Spin7, it equals 8 − 1

3
χ. The latter is an

integer because
25 + b2 + 2b−4 = b3 + b+4 .



Intrinsic torsion 16
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. . . of a Sp(2)Sp(1) structure lies in Λ1 ⊗m =
E H K H

E S3H K S3H

M8 is quaternionic if τ ∈ row 1; it is ideal if τ ∈ col 1.

Surprise. SU(3) possesses invariant structures of both types [J,M].

If M8 is quaternionic, there is an elliptic complex

0→ Γ(S2H)→ Γ(EH)→ Γ(Λ2
0E)→ 0,

which corresponds to the sheaf O(−2) on the twistor space Z 5.
Tensor by S2H to obtain (A ●,D). Passing to O(−3) gives

0→ Γ(H) ∂Ð→ Γ(E) ◻Ð→ Γ(E)Ð→ Γ(H)→ 0

where ∂ is a Fueter operator and ◻ is second order [B].



Some K theory 17
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Associated to the Dirac operator on HP2 is the virtual vector
bundle

Λ2
0(E −H) = Λ2

0E − E H + S2H.

Now, E −H can’t be a genuine vector bundle because:
● any monomorphism H → E would define a nowwhere zero
section of E ⊗H ≅ THP2 but χ = 3;
● E −H has rank 2, but a calculation shows c4(E −H) ≠ 0!

In fact, c(H) = 1 − h so

c(E −H) = c(C6 − 2H) = (1 − h)−2 = 1 + 2h + 3h2.

By contrast,

c(Λ2
0E −H) = c(∆+ − S2H −H) = 1 − 3h.

We shall see that this time the difference is a vector bundle.



Horrocks’s instanton 18
19

Theorem. There exists a rank 3 complex vector bundle V over
HP2 with c2=3h, and an SU(3)-connection with F ∈ Γ(sp(2)).
Proof. Recall that E = ker(p1∶ C6 → H). Similarly,

Λ2
0E = ker (Λ2

0(C6)Ð→ C6 ∧H) .

Fix a reduction of Sp(3) to SU(3), giving C6 = Λ1,0 ⊕ Λ0,1 and

p2∶ Λ2
0(C6)Ð→ C6.

Then p1 ○ p2 has rank 2 everywhere. The instanton connection on
V = ker(p1 ○ p2) is induced from that on Λ2

0E and ultimately E .

The moduli space of such instantons is then the total space of

SL(3,H)
SU(3) Ð→ SL(3,H)

Sp(3) , whose To ≅ Λ2
0(C6)



Summary 1

● In parallel to the theory of manifolds with reduced holonomy,
there is a unified theory of instantons (which arguably preceded it
in the exceptional cases).

● The quaternionic version of ADHM has many unanswered
questions and still open problems [O]. Unlike for G2 or Spin7,
there is no rich theory of submanifolds.

● The link between G2 and the nearly-Kähler case is striking,
especially since it is unknown if there are compact NK manifolds
other than the four usual suspects (S6, CP3, F3, S3×S3).

● More applications are needed of the differential complexes, their
cohomology and index theory. A big problem is to determine h2.

● The exceptional cases (NK, G2, Spin7) suffer from being
non-holomorphic theories, with no twistor spaces to retire to. But
this did not stop algebraic geometry being used in the construction
of new compact manifolds with holonomy G2 [CHNP].


