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Why Higher Gauge Theory? 2/37

(2,0) theory should capture parallel transport of self-dual strings.

D-branes
D-branes interact via strings.
Effective description: theory of endpoints
Parallel transport of these: Gauge theory

M5-branes
M5-branes interact via M2-branes.
Eff. description: theory of self-dual strings
Parallel transport: Higher gauge theory
(2,0) theory a higher gauge theory (HGT)?
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Lifting Things to M-Theory 3/37

Things are not straightforward but do look very promising.

So why not write down an HGT action and be done?

Things are more complicated...
Higher gauge theory is a very young area (since ∼2002).
Very few actions known for higher gauge theory.
More groundwork needed (2-vector spaces, ...)

However, what we can see so far is very encouraging:
Integrability of BPS subsectors via ADHM-type constructions
Twistor descriptions of HGTs
M2-brane models (BLG/ABJM) are HGTs
(1,0)-models from tensor hierarchies are HGTs
Noncommutativity lifts to nonassociativity
IKKT model has a clear categorified analogue
...
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Let’s start at a pedestrian pace:

Lifting a D-brane configuration to M-theory
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Monopoles and Self-Dual Strings 5/37

Lifting monopoles to M-theory yields self-dual strings.

0 1 2 3 4 5 6
D1 × ×
D3 × × × ×

BPS configuration

Perspective of D1:
Nahm eqn.

d
dx6

Xi + εijk[Xj , Xk] = 0

l Nahm transform l

Perspective of D3:
Bogomolny monopole eqn.

Fij = [∇i,∇j ] = εijk∇kΦ

M 0 1 2 3 4 5 6
M2 × × ×
M5 × × × × × ×

BPS configuration

Perspective of M2:
“Basu-Harvey eqn.”
d

dx6
Xµ+εµνρσ[Xν , Xρ, Xσ] = 0

l generalized Nahm transform l

Perspective of M5:
Self-dual string eqn.

Hµνρ = ∂[µBνρ] = εµνρσ∂σΦ
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3-Lie Algebras 6/37

3-Lie algebras are special strict Lie 2-algebras.

3-Lie algebra (do not confuse with Lie 3-algebras)

A is a vector space, [·, ·, ·] trilinear+antisymmetric.
Satisfies a “3-Jacobi identity,” the fundamental identity:

[A,B, [C,D,E]] = [[A,B,C], D,E] + [C, [A,B,D], E] + [C,D, [A,B,E]]

Filippov (1985)
Algebra of inner derivations closes due to fundamental identity

D : A ∧A → Der(A) =: gA D(A,B) B C := [A,B,C]

3-algebras 1:1←→ metric Lie algebras g ∼= Der(A)
faithful orthog. representations V ∼= A

J Figueroa-O’Farrill et al., 0809.1086
They form strict Lie 2-algebras. S Palmer&CS, 1203.5757
Hint: M2-brane models are linked to higher gauge theories.
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Generalizing the ADHMN construction to M-branes

That is, find solutions to H = ?dΦ
from solutions to the Basu-Harvey equation.

An M5-brane seems to require ...
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not an Albanian Gerbil, but an Abelian Gerbe
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Principal U(1)-Bundles and Abelian (1-)Gerbes 9/37

Principal U(1)-bundles are Abelian 0-gerbes.

Principal U(1)-bundle over manifold M with cover (Ui)i:

F ∈ Ω2(M, u(1)) with dF = 0

A(i) ∈ Ω1(Ui, u(1)) with F = dA(i)

gij ∈ Ω0(Ui ∩ Uj ,U(1)) with A(i) −A(j) = d log gij

E.g.: Dirac monopoles, principal U(1)-bundles over S2, c1 ∼
∫
S2 F

Abelian (local) gerbe over manifold M with cover (Ui)i:

H ∈ Ω3(M, u(1)) with dH = 0

B(i) ∈ Ω2(Ui, u(1)) with H = dB(i)

A(ij) ∈ Ω1(Ui ∩ Uj , u(1)) with B(i) −B(j) = dAij

hijk ∈ Ω0(Ui ∩ Uj ∩ Uk, u(1)) with A(ij) −A(ik) +A(jk) = dhijk

E.g.: Self-dual strings, abelian gerbes over S3, d1 ∼
∫
S3 H
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Gerbes are somewhat unfamiliar, difficult to work with.
(at least for physicists)

Can we somehow avoid using gerbes?
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Abelian Gerbes and Loop Space 11/37

By going to loop space, one can reduce differential forms by one degree.

Consider the following double fibration:

M LM

LM × S1

ev pr�
�	

@
@R

Identify TLM = LTM , then: x ∈ LM ⇒ ẋ(τ)∈ TLM

Transgression

T : Ωk+1(M)→ Ωk(LM) , vi =

∮
dτ vµi (τ)

δ

δxµ(τ)
∈ TLM

(T ω)x(v1(τ), . . . , vk(τ)) :=

∮
S1

dτ ω(x(τ))(v1(τ), . . . , vk(τ), ẋ(τ))

Nice properties: reparameterization invariant, chain map, ...

An abelian local gerbe over M is a principal U(1)-bundle over LM .
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Transgressed Self-Dual Strings 12/37

By going to loop space, one can reduce differential forms by one degree.

Recall the self-dual string equation on R4: Hµνκ = εµνκλ
∂
∂xλ

Φ

Its transgressed form is an equation for a 2-form F on LR4:

F(µσ)(νρ) = δ(σ − ρ)εµνκλẋ
κ(τ)

∂

∂yλ
Φ(y)

∣∣∣∣
y=x(τ)

Extend to full non-abelian loop space curvature:

F±(µσ)(ντ) =
(
εµνκλẋ

κ(σ)∇(λτ)Φ
)
(στ)

∓
(
ẋµ(σ)∇(ντ)Φ + ẋν(σ)∇(µτ)Φ− δµν ẋκ(σ)∇(κτ)Φ

)
[στ ]

where ∇(µσ) :=

∮
dτ δxµ(τ) ∧

(
δ

δxµ(τ)
+A(µτ)

)
Goal: Construct solutions to this equation.
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The ADHMN Construction 13/37

The ADHMN construction nicely translates to self-dual strings on loop space.

Nahm transform: Instantons on T 4 7→ instantons on (T 4)∗

Roughly here:

T 4:
{

3 rad. 0
1 rad. ∞ : D1 WV

and (T 4)∗:
{

3 rad. ∞ : D3 WV
1 rad. 0

Dirac operators: Xi solve Nahm eqn., Xµ solve Basu-Harvey eqn.

IIB : ∇/ = −1 d

dx6
+ σi(iXi + xi1k)

M : ∇/ = −γ5
d

dx6
+ 1

2γ
µν

(
D(Xµ, Xν)− i

∮
dτ xµ(τ)ẋν(τ)

)
normalized zero modes: ∇̄/ψ = 0 and 1 =

∫
I

ds ψ̄ψ

Solution to Bogomolny/self-dual string equations:

A :=

∫
I

ds ψ̄ dψ and Φ := −i

∫
I

ds ψ̄ s ψ
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Remarks on the Construction 14/37

The construction is very natural and behaves as expected.

Can easily make the discussion non-abelian.
Nahm eqn. and Basu-Harvey eqn. play analogous roles.
Construction extends to general. Basu-Harvey eqn. (ABJM).
One can construct many examples explicitly.
It reduces perfectly to ADHMN via the M2-Higgs mechanism.

CS, 1007.3301, S Palmer&CS, 1105.3904
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However:

Loop spaces are scary...
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So, let’s bite the bullet:

Nonabelian Gerbes and Higher Gauge Theory
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Higher Gauge Theory 17/37

Higher gauge theory describes parallel transport of extended objects.

Parallel transport of particles in representation of gauge group G:
holonomy functor hol : path p 7→ hol(p) ∈ G

hol(p) = P exp(
∫
pA), P : path ordering, trivial for U(1).

Parallel transport of strings with gauge group U(1):
map hol : surface s 7→ hol(s) ∈ U(1)

hol(s) = exp(
∫
sB), B: connective structure on gerbe.

Nonabelian case:
much more involved!
no straightforward definition of surface ordering
solution: Categorification!

see Baez, Huerta, 1003.4485
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We will need to use some very simple notions of
category theory, an esoteric subject noted for its
difficulty and irrelevance.
G. Moore and N. Seiberg, 1989

What does categorification mean?
One of Jeff Harvey’s questions to identify
the “generation PhD>1999” at Strings 2013.
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Parallel Transport Along Surfaces 19/37

Categorification eliminates the need for surface ordering.

Consider self-dual strings:
endpoints: objects
string: morphisms of a category. • •

SDS

yy

Parallel transport along surface:
morphism between morphisms

• •
SDS′

ee

SDS

yy
��

This yields a 2-category: objects, 1-morphisms, 2-morphisms
Nomenclature: 2-category ≡ strict bicategory
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Internal Categorification of Lie Algebras 20/37

A weak Lie 2-algebra is the internal categorification of a Lie algebra.

Most mathematical notions: Stuff endowed with Structure
E.g.: Lie algebra: Vector space V with Lie bracket [·, ·]:

[v, w] = −[w, v] and [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0

Internal categorification: (as opposed to: numbers → sets)

“stuff” → (small) category, objects and morphisms of “stuff”
“structure” → functors
structure relations hold “up to isomorphisms”
functors satisfy coherence axioms

Weak Lie 2-algebra is a category L: Roytenberg, 2007
objects and morphisms form vector spaces
endowed with functor [·, ·] : L × L → L
natural trafos: Alt : [v, w]⇒ −[w, v]

Jac : [u, [v, w]]+[v, [w, u]]⇒ −[w, [u, v]]
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Semistrict Lie 2-Algebras: 2-Term L∞-Algebras 21/37

A semistrict Lie 2-algebra is equivalent to a 2-term strong-homotopy Lie algebra.

Further Restrictions of Weak Lie 2-algebras:

• Alt = id: semistrict • Jac = id: hemistrict
• Alt = Jac = id: strict

Semistrict Lie n-algebras ↔ n-term strong homotopy Lie algebras:
Graded vector space/Complex:

L−n
µ1−→ . . .

µ1−→ L1
µ1−→ L0

µ1−→ 0

Antisymmetric “products” µn : L⊗n → L of degree 2− n
Higher/Homotopy Jacobi identities, e.g.

µ21 = 0 ,

µ1(µ2(`1, `2)) = ±µ2(µ1(`1), `2)± µ2(µ1(`2), `2)
µ2(µ2(`1, `2), `3) + cycl. = ±µ1(µ3(`1, `2, `3))

Known from: BV-quant., string FT, deformation quant., ...
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Higher Gauge Theory with L∞-Algebras 22/37

Homotopy Maurer-Cartan equations determine higher gauge theory

Homotopy Maurer-Cartan equations (BV-quant., SFT)

Define curvatures. F = dA+ 1
2 [A,A] = 0 generalizes to

µ1(φ) + 1
2µ2(φ, φ) + . . . =

∞∑
i=1

(−1)i(i+1)/2

i!
µi(φ, · · · , φ) = 0

Gauge transformations δA = dα+ [A,α] generalizes to

δφ = µ1(λ) + µ2(φ, λ) + . . . =
∞∑
i=1

(−1)i(i−1)/2

(i− 1)!
µi(λ, φ, · · · , φ)

Note: L∞-algebra L̃ → L = Ω•(M)⊗ L̃, degrees add.
HMC equations for semistrict Lie 2-algebra:

φ = A+B ∈ L1 = Ω1(M)⊗ L̃0 ⊕ Ω2(M)⊗ L̃−1

EOMs:
F = dA+ 1

2µ2(A,A)− µ1(B) = 0

H = dB + µ2(A,B) + 1
3!µ3(A,A,A) = 0
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Higher Gauge Theories 23/37

The most interesting higher gauge theories for us live in 6 and 4 dimensions.

“Fake curvature”: F = dA+ 1
2µ2(A,A)− µ1(B) = 0

Vanishing makes parallel transport reparam. invariant.
Rumour: F = 0⇒ theory abelian. This is false!
3-form curvature: H = dB + µ2(A,B) + 1

3!µ3(A,A,A) = 0
This describes a flat bundle, we can generalize this.

Gauge part of (2,0) theory

If (2,0) theory on R1,5 is a higher gauge theory, then gauge part is:

H = ∗H , F = 0 .

Non-Abelian Self-Dual Strings

BPS equation for (2,0) theory on R4 (∼ monopoles in 4d SYM)
H = ∗ (dΦ + µ2(A,Φ)) , F = 0 .

Later: solutions, categorified SU(2)-Instanton/-monopole
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Differential Lie Crossed Modules 24/37

Differential Lie crossed modules are strict Lie 2-algebras.

Restricting to Alt = Jac = id in a weak Lie 2-algebra yields:

Differential Lie crossed modules / Lie crossed modules

Pair of Lie algebras (g, h), written as (h
t−→ g) with:

left automorphism action B: g× h→ h

group homomorphism t : h→ g

t(g B h) = [g, t(h)] and t(h1) B h2 = [h1, h2]

Finite version: Lie crossed module (H
t−→ G)

Simplest examples:

Lie group G, Lie crossed module: (1
t−→ G).

Abelian Lie group G, Lie crossed module: BG = (G
t−→ 1).

More involved:
Automorphism 2-group of Lie group G: (G

t−→ Aut(G))
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Principal 2-Bundles with Connective Structures 25/37

Higher gauge theory is the dynamical theory of principal 2-bundles.

Consider a manifold M with cover (Ua)
Object Principal G-bundle Principal (H t−→ G)-bundle

Cochains (gab) valued in G (gab) valued in G, (habc) valued in H

Cocycle gabgbc = gac t(habc)gabgbc = gac
hacdhabc = habd(gab B hbcd)

Coboundary gag
′
ab = gabgb gag

′
ab = t(hab)gabgb

hachabc = (ga B h′abc)hab(gab B hbc)

gauge pot. Aa ∈ Ω1(Ua)⊗ g Aa ∈ Ω1(Ua)⊗ g, Ba ∈ Ω2(Ua)⊗ h

Curvature Fa = dAa +Aa ∧Aa Fa = dAa +Aa ∧Aa − t(Ba)
!

= 0
Ha = dBa +Aa B Ba

Gauge trafos Ãa := g−1a Aaga + g−1a dga Ãa := g−1a Aaga + g−1a dga + t(Λa)

B̃a := g−1a B Ba + Ãa B Λa + dΛa − Λa ∧ Λa

Remarks:
A principal (1

t−→ G)-bundle is a principal G-bundle.

A principal (U(1)
t−→ 1) = BU(1)-bundle is an abelian gerbe.

Gauge part of (2,0) theory even clear for non-trivial M .
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Application:

Constructing Superconformal (2,0) Theories using Twistor Spaces
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Twistor Description of Higher Yang-Mills Fields 27/37

Using twistor spaces, one can map holomorphic data to solutions to field equations.

Details ⇒ Martin Wolf’s talk later

Recall the principle of the Penrose-Ward transform:
We construct a double fibration

P M

F

�
�	

@
@R

P : twistor space, F : correspondence space

Hn(P,S) (e.g. vector bundles) 1:1←→ sols. to field equations.
Our new contributions:

Use non-abelian gerbes
New twistor space

Can describe in this way:
6d (2,0) superconformal equations of motion
self-dual strings
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Context:

The ABJM Model as a Higher Gauge Theory
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The ABJM Model as a Higher Gauge Theory 29/37

The ABJM model can be completed to a higher gauge theory.

Most dualities in string theory between Yang-Mills theories.

And in M-theory? M2-branes: Chern-Simons-matter theories
M5-branes: Tensor-multiplet theories

These can be put on equal footing. S Palmer&CS, 1311.1997

Step 1: The ABJM gauge structures / hermitian 3-Lie algebras
form differential crossed modules. S Palmer&CS, 1203.5757
but: t = 0, thus F = t(B) = 0.

Recall: Lie algebra g → inner derivation dcm g
t−→ g

dcm h
t−→ g → inner derivation d2-cm h

t−→ gn h
t−→ g

Explicitly:(
0 gl(N,C)
0 0

)
t−→
(

u(N) gl(N,C)
0 u(N)

)
t−→
(

u(N) 0
0 u(N)

)
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The ABJM Model as a Higher Gauge Theory 30/37

The ABJM model can be completed to a higher gauge theory.

Step 2: Implement the fake curvature conditions
Here, we are working with a differential 2-crossed module.
Gauge potentials: A, B, C. Curvatures: F , H, G.
Conditions F = F − t(B) = 0, H = H − t(C) = 0

Action:

SABJM =

∫
R1,2

tr
(
k
4πη A ∧ (dA+ 1

3 [A,A])

−∇Z†A ∧ ∗∇Z
A − ∗iψ̄A ∧∇/ ψA

)
+ V

SHGT = SABJM +

∫
R1,2

tr
(
λ†1 ∧ (F − t(B))

+ λ†2(H − t(C)) + λ†3t(λ2)
)

This yields ABJM eoms + fake curvature constraints
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Application:

Higher Monopole and Instanton Solutions
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Review: The BPST Instanton 32/37

The BPST instanton can be conveniently written using quaternions.

Recall the quaternionic form of the elementary instanton on S4:

Conformal geometry of S4

Describe S4 by H ∪ {∞}. Coordinates: x = x1 + ix2 + jx3 + kx4.
Conformal transformations:

x 7→ (ax+ b)(cx+ d)−1 , a, b, c, d ∈ H

SU(2)-Instanton:

A = im

(
x̄dx

1 + |x|2

)
⇒ F = im

(
dx̄ ∧ dx

(1 + |x|2)2

)
SU(2)-Anti-Instanton:

A = im

(
xdx̄

1 + |x|2

)
⇒ F = im

(
dx ∧ dx̄

(1 + |x|2)2

)
Belavin et al. 1975, Atiyah 1979
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Elementary Solution: The Higher Instanton 33/37

The quaternionic form of the BPST instanton solution translates perfectly.

Solution to the higher instanton equations H = ?H, F = t(B):
Same inner derivation 2-crossed module as for ABJM
Recall BPST instanton:

A = im

(
x̄dx

1 + |x|2

)
⇒ F = im

(
dx̄ ∧ dx

(1 + |x|2)2

)
Solution in coordinates x = xMσM , x̂ = xM σ̄M

A =

(
x̂ dx

1+|x|2 0

0 dx x̂
1+|x|2

)
B = F +

(
0 x̂dx∧dx̂

(1+|x|2)2

0 0

)

F := dA+A ∧A =

(
dx̂∧dx

(1+|x|2)2 + 2 dx̂ x∧dx̂ x
(1+|x|2)2 0

0 − dx∧dx̂
(1+|x|2)2

)

H := dB +A B B =

(
0 dx̂∧dx∧dx̂

(1+|x|2)3

0 0

)
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Review: The ’t Hooft-Polyakov Monopole 34/37

The ’t Hooft-Polyakov Monopole is a non-singular solution with charge 1.

Recall ’t Hooft-Polyakov monopole (ei generate su(2), ξ = v|x|):

Φ =
eix

i

|x|2
(
ξ coth(ξ)− 1

)
, A = εijk

eix
j

|x|2

(
1− ξ

sinh(ξ)

)
dxk

At S∞2 : Φ ∼ g(θ)e3g(θ)1.
g(θ) : S2

∞ → SU(2)/U(1): winding 1
Charge q = 1 with

2πq = 1
2

∫
S2
∞

tr (F †Φ)

||Φ||
with ||Φ|| :=

√
1
2 tr (Φ†Φ)

Higgs field non-singular:
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Elementary Solutions: A Non-Abelian Self-Dual String 35/37

We can write down a non-abelian self-dual string with winding number 1.

Self-Dual String (eµ generate DCM su(2)×su(2)
t→ R4, ξ = v|x|2):

Φ =
eµx

µ

|x|3
f(ξ) , Bµν = εµνκλ

eκx
λ

|x|3
g(ξ) , Aµ = εµνκλD(eν , eκ)

xλ

|x|2
h(ξ)

At S∞3 : Φ ∼ g(θ) B e4. g(θ) : S3
∞ → SU(2) has winding 1.

Charge q = 1:

(2π)3q = 1
2

∫
S3
∞

(H,Φ)

||Φ||
with ||Φ|| :=

√
1
2(Φ,Φ) ,

Higgs field non-singular:

Christian Sämann Higher Gauge Theory and M-theory



What I didn’t have time to talk about... 36/37

There is much more evidence for using higher structures in M-theory.

6d (1,0) models from tensor hierarchies
Samtleben et al., 1108.4060, also 1108.5131

(1,0) tensor + vector multiplets with new gauge structure
These are higher gauge theories.
New gauge structure: symplectic Lie n-algebroids

S Palmer&CS 1308.2622, Samtleben et al. 1403.7114
Geometric Quantization (Noncommutative/Fuzzy spaces)

Analogues by quantizing “Poisson Lie 2-algebras”
This yields nonassociative geometry.
A categorified IKKT model can be written down.
This model has nonassociative geometry solutions.
Background expansion: nonassociative HGT

P Ritter&CS 1308.4892
HGT a very nice playground, particularly for PhD students:

Higher Magnetic Bags S Palmer&CS 1204.6685
Proof of Higher Poincaré Lemma G Demessie&CS 1406.5342
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Conclusions 37/37

Summary and Outlook.

Summary:
X Clear physical and mathematical motivation to study HGT
X Generalized ADHMN-like construction on loop space
X Various twistor constructions with non-abelian gerbes
X 6d superconformal tensor multiplet equations
X (1,0) models of Samtleben et al. is HGT
X ABJM model is a HGT
X Explicit higher monopole and instanton solutions

Future directions:
� Twistor spaces of loop spaces
� Continue translation of higher ADHM-constructions
� Geometric Quant. with higher Hilbert spaces
� Study categorified IKKT model
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