Higher Gauge Theory and M-theory

Christian Sämann

School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh
Gauge Theories in Higher Dimensions, Hannover, 11.08.2014
Based on work w. S Palmer, G Demessie, B Jurčo, M Wolf, P Ritter, R Szabo:

- Higher Gauge Theory: 1203.5757, 1308.2622, 1311.1977, 1406.5342
- Integrability: 1105.3904, 1205.3108, 1305.4870, 1312.5644, 1403.7185
- Geometric quantization: 1211.0395, 1308.4892
$(2,0)$ theory should capture parallel transport of self-dual strings.

D-branes

- D-branes interact via strings.
- Effective description: theory of endpoints
- Parallel transport of these: Gauge theory

M5-branes

- M5-branes interact via M2-branes.
- Eff. description: theory of self-dual strings
- Parallel transport: Higher gauge theory
- $(2,0)$ theory a higher gauge theory (HGT)?

So why not write down an HGT action and be done?
Things are more complicated...

- Higher gauge theory is a very young area (since ~2002).
- Very few actions known for higher gauge theory.
- More groundwork needed (2-vector spaces, ...)

However, what we can see so far is very encouraging:

- Integrability of BPS subsectors via ADHM-type constructions
- Twistor descriptions of HGTs
- M2-brane models (BLG/ABJM) are HGTs
- $(1,0)$-models from tensor hierarchies are HGTs
- Noncommutativity lifts to nonassociativity
- IKKT model has a clear categorified analogue
- ...

Let's start at a pedestrian pace:

Lifting a D-brane configuration to M-theory

Monopoles and Self-Dual Strings

Lifting monopoles to M-theory yields self-dual strings.

	0	1	2	3	4	5	6
D1	\times						\times
D3	\times	\times	\times	\times			
BPS configuration							

Perspective of D1:

Nahm eqn.

$$
\frac{\mathrm{d}}{\mathrm{~d} x^{6}} X^{i}+\varepsilon^{i j k}\left[X^{j}, X^{k}\right]=0
$$

\downarrow Nahm transform \downarrow
Perspective of D3:
Bogomolny monopole eqn.
$F_{i j}=\left[\nabla_{i}, \nabla_{j}\right]=\varepsilon_{i j k} \nabla_{k} \Phi$

Perspective of M2:
"Basu-Harvey eqn."
$\frac{\mathrm{d}}{\mathrm{d} x^{6}} X^{\mu}+\varepsilon^{\mu \nu \rho \sigma}\left[X^{\nu}, X^{\rho}, X^{\sigma}\right]=0$
\downarrow generalized Nahm transform \downarrow Perspective of M5:

Self-dual string eqn.

$$
H_{\mu \nu \rho}=\partial_{[\mu} B_{\nu \rho]}=\varepsilon_{\mu \nu \rho \sigma} \partial_{\sigma} \Phi
$$

3-Lie Algebras

3-Lie algebras are special strict Lie 2-algebras.

3-Lie algebra (do not confuse with Lie 3-algebras)

\mathcal{A} is a vector space, $[\cdot, \cdot, \cdot]$ trilinear+antisymmetric.
Satisfies a "3-Jacobi identity," the fundamental identity:
$[A, B,[C, D, E]]=[[A, B, C], D, E]+[C,[A, B, D], E]+[C, D,[A, B, E]]$
Filippov (1985)
Algebra of inner derivations closes due to fundamental identity

$$
D: \mathcal{A} \wedge \mathcal{A} \rightarrow \operatorname{Der}(\mathcal{A})=: \mathfrak{g}_{\mathcal{A}} \quad D(A, B) \triangleright C:=[A, B, C]
$$

- 3-algebras $\stackrel{1: 1}{\longleftrightarrow}$ metric Lie algebras $\mathfrak{g} \cong \operatorname{Der}(\mathcal{A})$
faithful orthog. representations $V \cong \mathcal{A}$
J Figueroa-O'Farrill et al., 0809.1086
- They form strict Lie 2-algebras. S Palmer\&CS, 1203.5757
- Hint: M2-brane models are linked to higher gauge theories.

Generalizing the ADHMN construction to M-branes

That is, find solutions to $H=\star \mathrm{d} \Phi$ from solutions to the Basu-Harvey equation.

An M5-brane seems to require ...

Principal U(1)-bundles are Abelian 0-gerbes.
Principal U(1)-bundle over manifold M with cover $\left(U_{i}\right)_{i}$:

$$
\begin{gathered}
F \in \Omega^{2}(M, \mathfrak{u}(1)) \text { with } \mathrm{d} F=0 \\
A_{(i)} \in \Omega^{1}\left(U_{i}, \mathfrak{u}(1)\right) \text { with } F=\mathrm{d} A_{(i)} \\
g_{i j} \in \Omega^{0}\left(U_{i} \cap U_{j}, \mathrm{U}(1)\right) \text { with } A_{(i)}-A_{(j)}=\mathrm{d} \log g_{i j}
\end{gathered}
$$

E.g.: Dirac monopoles, principal $\mathrm{U}(1)$-bundles over $S^{2}, c_{1} \sim \int_{S^{2}} F$

Abelian (local) gerbe over manifold M with cover $\left(U_{i}\right)_{i}$:

$$
\begin{gathered}
H \in \Omega^{3}(M, \mathfrak{u}(1)) \text { with } \mathrm{d} H=0 \\
B_{(i)} \in \Omega^{2}\left(U_{i}, \mathfrak{u}(1)\right) \text { with } H=\mathrm{d} B_{(i)} \\
A_{(i j)} \in \Omega^{1}\left(U_{i} \cap U_{j}, \mathfrak{u}(1)\right) \text { with } B_{(i)}-B_{(j)}=\mathrm{d} A_{i j} \\
h_{i j k} \in \Omega^{0}\left(U_{i} \cap U_{j} \cap U_{k}, \mathfrak{u}(1)\right) \text { with } A_{(i j)}-A_{(i k)}+A_{(j k)}=\mathrm{d} h_{i j k}
\end{gathered}
$$

E.g.: Self-dual strings, abelian gerbes over $S^{3}, d_{1} \sim \int_{S^{3}} H$

Gerbes are somewhat unfamiliar, difficult to work with. (at least for physicists)

Can we somehow avoid using gerbes?

Abelian Gerbes and Loop Space

By going to loop space, one can reduce differential forms by one degree.
Consider the following double fibration:

Identify $T \mathcal{L} M=\mathcal{L} T M$, then: $x \in \mathcal{L} M \Rightarrow \dot{x}(\tau) \in T \mathcal{L} M$

Transgression

$$
\begin{gathered}
\mathcal{T}: \Omega^{k+1}(M) \rightarrow \Omega^{k}(\mathcal{L} M), \quad v_{i}=\oint \mathrm{d} \tau v_{i}^{\mu}(\tau) \frac{\delta}{\delta x^{\mu}(\tau)} \in T \mathcal{L} M \\
(\mathcal{T} \omega)_{x}\left(v_{1}(\tau), \ldots, v_{k}(\tau)\right):=\oint_{S^{1}} \mathrm{~d} \tau \omega(x(\tau))\left(v_{1}(\tau), \ldots, v_{k}(\tau), \dot{x}(\tau)\right)
\end{gathered}
$$

Nice properties: reparameterization invariant, chain map, ...

An abelian local gerbe over M is a principal $\mathrm{U}(1)$-bundle over $\mathcal{L} M$.

Recall the self-dual string equation on $\mathbb{R}^{4}: H_{\mu \nu \kappa}=\varepsilon_{\mu \nu \kappa \lambda \lambda} \frac{\partial}{\partial x^{\lambda}} \Phi$
Its transgressed form is an equation for a 2-form F on $\mathcal{L \mathbb { R } ^ { 4 } \text { : }}$

$$
F_{(\mu \sigma)(\nu \rho)}=\left.\delta(\sigma-\rho) \varepsilon_{\mu \nu \kappa \lambda} \dot{x}^{\kappa}(\tau) \frac{\partial}{\partial y^{\lambda}} \Phi(y)\right|_{y=x(\tau)}
$$

Extend to full non-abelian loop space curvature:

$$
\begin{aligned}
F_{(\mu \sigma)(\nu \tau)}^{ \pm}= & \left(\varepsilon_{\mu \nu \kappa \lambda} \dot{x}^{\kappa}(\sigma) \nabla_{(\lambda \tau)} \Phi\right)_{(\sigma \tau)} \\
& \mp\left(\dot{x}_{\mu}(\sigma) \nabla_{(\nu \tau)} \Phi+\dot{x}_{\nu}(\sigma) \nabla_{(\mu \tau)} \Phi-\delta_{\mu \nu} \dot{x}^{\kappa}(\sigma) \nabla_{(\kappa \tau)} \Phi\right)_{[\sigma \tau]} \\
\text { where } \nabla_{(\mu \sigma)}: & : \oint \mathrm{d} \tau \delta x^{\mu}(\tau) \wedge\left(\frac{\delta}{\delta x^{\mu}(\tau)}+A_{(\mu \tau)}\right)
\end{aligned}
$$

Goal: Construct solutions to this equation.

Nahm transform: Instantons on $T^{4} \mapsto$ instantons on $\left(T^{4}\right)^{*}$ Roughly here:

$$
T^{4}:\left\{\begin{array}{l}
3 \mathrm{rad.} 0 \\
1 \mathrm{rad.} . \infty
\end{array}: \mathrm{D} 1 \mathrm{WV} \text { and }\left(T^{4}\right)^{*}:\left\{\begin{array}{l}
3 \mathrm{rad.} \infty: \mathrm{D} 3 \mathrm{WV} \\
1 \mathrm{rad.} 0
\end{array}\right.\right.
$$

Dirac operators: X^{i} solve Nahm eqn., X^{μ} solve Basu-Harvey eqn.

$$
\begin{aligned}
\text { IIB }: \not \nabla & =-\mathbb{1} \frac{\mathrm{d}}{\mathrm{~d} x^{6}}+\sigma^{i}\left(\mathrm{i} X^{i}+x^{i} \mathbb{1}_{k}\right) \\
\mathrm{M}: \not \nabla & =-\gamma_{5} \frac{\mathrm{~d}}{\mathrm{~d} x^{6}}+\frac{1}{2} \gamma^{\mu \nu}\left(D\left(X^{\mu}, X^{\nu}\right)-\mathrm{i} \oint \mathrm{~d} \tau x^{\mu}(\tau) \dot{x}^{\nu}(\tau)\right)
\end{aligned}
$$

normalized zero modes: $\quad \bar{\nabla} \psi=0 \quad$ and $\quad \mathbb{1}=\int_{\mathcal{I}} \mathrm{d} s \bar{\psi} \psi$

Solution to Bogomolny/self-dual string equations:

$$
A:=\int_{\mathcal{I}} \mathrm{d} s \bar{\psi} \mathrm{~d} \psi \quad \text { and } \quad \Phi:=-\mathrm{i} \int_{\mathcal{I}} \mathrm{d} s \bar{\psi} s \psi
$$

Remarks on the Construction

The construction is very natural and behaves as expected.

- Can easily make the discussion non-abelian.
- Nahm eqn. and Basu-Harvey eqn. play analogous roles.
- Construction extends to general. Basu-Harvey eqn. (ABJM).
- One can construct many examples explicitly.
- It reduces perfectly to ADHMN via the M2-Higgs mechanism.

CS, 1007.3301, S Palmer\&CS, 1105.3904

String Geometry and Loop Spares in Greifswald

Workshop July 28 - August 1, 2014

University of Greifswald

Speakers include: Christian Becker [Potsdam] - Ulrich Bunke [Regensburg]
Pedram Hekmati [Adelaide] - Chris Kottke [Northeastern] - Martin Olbermann [Bochum]
Christian Sämann [Edinburgh] - Hisham Sati [Pittsburgh] - Urs Schreiber [Nijmegen]
Peter Teichner [MPI] - Scott Wilson [CUNY] - Mahmoud Zeinalian [Long Island]

Loop spaces are scary...

So, let's bite the bullet:

Nonabelian Gerbes and Higher Gauge Theory

Parallel transport of particles in representation of gauge group G :

- holonomy functor hol : path $p \mapsto \operatorname{hol}(p) \in \mathrm{G}$
- hol $(p)=P \exp \left(\int_{p} A\right), P$: path ordering, trivial for $U(1)$.

Parallel transport of strings with gauge group $\mathrm{U}(1)$:

- map hol : surface $s \mapsto$ hol $(s) \in \mathrm{U}(1)$
- hol $(s)=\exp \left(\int_{s} B\right), B$: connective structure on gerbe.

Nonabelian case:

- much more involved!
- no straightforward definition of surface ordering
- solution: Categorification!

> We will need to use some very simple notions of category theory, an esoteric subject noted for its difficulty and irrelevance.
> G. Moore and N. Seiberg, 1989

What does categorification mean?
One of Jeff Harvey's questions to identify the "generation PhD>1999" at Strings 2013.

Consider self-dual strings:

- endpoints: objects
string: morphisms of a category.

Parallel transport along surface: morphism between morphisms

- This yields a 2-category: objects, 1-morphisms, 2-morphisms
- Nomenclature: 2-category \equiv strict bicategory
- Most mathematical notions: Stuff endowed with Structure
- E.g.: Lie algebra: Vector space V with Lie bracket $[\cdot, \cdot]$:

$$
[v, w]=-[w, v] \quad \text { and } \quad[u,[v, w]]+[v,[w, u]]+[w,[u, v]]=0
$$

- Internal categorification: (as opposed to: numbers \rightarrow sets)
- "stuff" \rightarrow (small) category, objects and morphisms of "stuff"
- "structure" \rightarrow functors
- structure relations hold "up to isomorphisms"
- functors satisfy coherence axioms
- Weak Lie 2-algebra is a category \mathcal{L} :

Roytenberg, 2007

- objects and morphisms form vector spaces
- endowed with functor $[\cdot, \cdot]: \mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$
- natural trafos: Alt : $[v, w] \Rightarrow-[w, v]$ Jac : $[u,[v, w]]+[v,[w, u]] \Rightarrow-[w,[u, v]]$

A semistrict Lie 2-algebra is equivalent to a 2-term strong-homotopy Lie algebra.
Further Restrictions of Weak Lie 2-algebras:

- Alt $=$ id: semistrict \quad Jac $=$ id: hemistrict
- Alt $=\mathrm{Jac}=\mathrm{id}:$ strict

Semistrict Lie n-algebras $\leftrightarrow n$-term strong homotopy Lie algebras:

- Graded vector space/Complex:

$$
L_{-n} \xrightarrow{\mu_{1}} \ldots \xrightarrow{\mu_{1}} L_{1} \xrightarrow{\mu_{1}} L_{0} \xrightarrow{\mu_{1}} 0
$$

- Antisymmetric "products" $\mu_{n}: L^{\otimes n} \rightarrow L$ of degree $2-n$
- Higher/Homotopy Jacobi identities, e.g.

$$
\begin{aligned}
& \mu_{1}^{2}=0 \\
& \mu_{1}\left(\mu_{2}\left(\ell_{1}, \ell_{2}\right)\right)= \pm \mu_{2}\left(\mu_{1}\left(\ell_{1}\right), \ell_{2}\right) \pm \mu_{2}\left(\mu_{1}\left(\ell_{2}\right), \ell_{2}\right) \\
& \mu_{2}\left(\mu_{2}\left(\ell_{1}, \ell_{2}\right), \ell_{3}\right)+\operatorname{cycl}= \pm \mu_{1}\left(\mu_{3}\left(\ell_{1}, \ell_{2}, \ell_{3}\right)\right)
\end{aligned}
$$

- Known from: BV-quant., string FT, deformation quant., ...

Homotopy Maurer-Cartan equations (BV-quant., SFT)

Define curvatures. $F=\mathrm{d} A+\frac{1}{2}[A, A]=0$ generalizes to

$$
\mu_{1}(\phi)+\frac{1}{2} \mu_{2}(\phi, \phi)+\ldots=\sum_{i=1}^{\infty} \frac{(-1)^{i(i+1) / 2}}{i!} \mu_{i}(\phi, \cdots, \phi)=0
$$

Gauge transformations $\delta A=\mathrm{d} \alpha+[A, \alpha]$ generalizes to

$$
\delta \phi=\mu_{1}(\lambda)+\mu_{2}(\phi, \lambda)+\ldots=\sum_{i=1}^{\infty} \frac{(-1)^{i(i-1) / 2}}{(i-1)!} \mu_{i}(\lambda, \phi, \cdots, \phi)
$$

- Note: L_{∞}-algebra $\tilde{L} \rightarrow L=\Omega^{\bullet}(M) \otimes \tilde{L}$, degrees add.
- HMC equations for semistrict Lie 2-algebra:
- $\phi=A+B \in L_{1}=\Omega^{1}(M) \otimes \tilde{L}_{0} \oplus \Omega^{2}(M) \otimes \tilde{L}_{-1}$
- EOMs:

$$
\mathcal{F}=\mathrm{d} A+\frac{1}{2} \mu_{2}(A, A)-\mu_{1}(B)=0
$$

$$
\mathcal{H}=\mathrm{d} B+\mu_{2}(A, B)+\frac{1}{3!} \mu_{3}(A, A, A)=0
$$

The most interesting higher gauge theories for us live in 6 and 4 dimensions.

- "Fake curvature": $\mathcal{F}=\mathrm{d} A+\frac{1}{2} \mu_{2}(A, A)-\mu_{1}(B)=0$ Vanishing makes parallel transport reparam. invariant. Rumour: $\mathcal{F}=0 \Rightarrow$ theory abelian. This is false!
- 3-form curvature: $\mathcal{H}=\mathrm{d} B+\mu_{2}(A, B)+\frac{1}{3!} \mu_{3}(A, A, A)=0$ This describes a flat bundle, we can generalize this.

Gauge part of $(2,0)$ theory

If $(2,0)$ theory on $\mathbb{R}^{1,5}$ is a higher gauge theory, then gauge part is:

$$
\mathcal{H}=* \mathcal{H}, \quad \mathcal{F}=0 .
$$

Non-Abelian Self-Dual Strings

BPS equation for $(2,0)$ theory on \mathbb{R}^{4} (\sim monopoles in 4 d SYM)

$$
\mathcal{H}=*\left(\mathrm{~d} \Phi+\mu_{2}(A, \Phi)\right), \quad \mathcal{F}=0
$$

Later: solutions, categorified SU(2)-Instanton/-monopole

Differential Lie Crossed Modules

Restricting to Alt $=\mathrm{Jac}=\mathrm{id}$ in a weak Lie 2-algebra yields:
Differential Lie crossed modules / Lie crossed modules
Pair of Lie algebras $(\mathfrak{g}, \mathfrak{h})$, written as $(\mathfrak{h} \xrightarrow{\mathrm{t}} \mathfrak{g})$ with:

- left automorphism action $\triangleright: \mathfrak{g} \times \mathfrak{h} \rightarrow \mathfrak{h}$
- group homomorphism $\mathrm{t}: \mathfrak{h} \rightarrow \mathfrak{g}$

$$
\mathrm{t}(g \triangleright h)=[g, \mathrm{t}(h)] \quad \text { and } \quad \mathrm{t}\left(h_{1}\right) \triangleright h_{2}=\left[h_{1}, h_{2}\right]
$$

- Finite version: Lie crossed module $(\mathrm{H} \xrightarrow{\mathrm{t}} \mathrm{G})$

Simplest examples:

- Lie group G, Lie crossed module: $(1 \xrightarrow{\mathrm{t}} \mathrm{G})$.
- Abelian Lie group G, Lie crossed module: $B G=(G \xrightarrow{\mathrm{t}} 1)$. More involved:
- Automorphism 2-group of Lie group $G:(G \xrightarrow{\mathrm{t}}$ Aut $(\mathrm{G}))$

Higher gauge theory is the dynamical theory of principal 2-bundles.
Consider a manifold M with cover $\left(U_{a}\right)$
Object Principal G-bundle \quad Principal $\left(\mathrm{H}^{\mathrm{t}} \mathrm{G}\right)$-bundle

Cochains $\left(g_{a b}\right)$ valued in G
Cocycle $g_{a b} g_{b c}=g_{a c}$

Coboundary $g_{a} g_{a b}^{\prime}=g_{a b} g_{b}$
gauge pot. $\quad A_{a} \in \Omega^{1}\left(U_{a}\right) \otimes \mathfrak{g}$
Curvature $\quad F_{a}=\mathrm{d} A_{a}+A_{a} \wedge A_{a}$
$\left(g_{a b}\right)$ valued in G, $\left(h_{a b c}\right)$ valued in H
$\mathrm{t}\left(h_{a b c}\right) g_{a b} g_{b c}=g_{a c}$
$h_{a c d} h_{a b c}=h_{a b d}\left(g_{a b} \triangleright h_{b c d}\right)$
$g_{a} g_{a b}^{\prime}=\mathrm{t}\left(h_{a b}\right) g_{a b} g_{b}$
$h_{a c} h_{a b c}=\left(g_{a} \triangleright h_{a b c}^{\prime}\right) h_{a b}\left(g_{a b} \triangleright h_{b c}\right)$
$A_{a} \in \Omega^{1}\left(U_{a}\right) \otimes \mathfrak{g}, B_{a} \in \Omega^{2}\left(U_{a}\right) \otimes \mathfrak{h}$
$\mathcal{F}_{a}=\mathrm{d} A_{a}+A_{a} \wedge A_{a}-\mathrm{t}\left(B_{a}\right) \stackrel{!}{=} 0$
$\mathcal{H}_{a}=\mathrm{d} B_{a}+A_{a} \triangleright B_{a}$
Gauge trafos $\quad \tilde{A}_{a}:=g_{a}^{-1} A_{a} g_{a}+g_{a}^{-1} \mathrm{~d} g_{a} \quad \tilde{A}_{a}:=g_{a}^{-1} A_{a} g_{a}+g_{a}^{-1} \mathrm{~d} g_{a}+\mathrm{t}\left(\Lambda_{a}\right)$
$\tilde{B}_{a}:=g_{a}^{-1} \triangleright B_{a}+\tilde{A}_{a} \triangleright \Lambda_{a}+\mathrm{d} \Lambda_{a}-\Lambda_{a} \wedge \Lambda_{a}$

Remarks:

- A principal $(1 \xrightarrow{\mathrm{t}} \mathrm{G})$-bundle is a principal G-bundle.
- A principal $(\mathrm{U}(1) \xrightarrow{\mathrm{t}} 1)=\mathrm{BU}(1)$-bundle is an abelian gerbe.
- Gauge part of $(2,0)$ theory even clear for non-trivial M.

Application:

Constructing Superconformal $(2,0)$ Theories using Twistor Spaces

Details \Rightarrow Martin Wolf's talk later

Recall the principle of the Penrose-Ward transform:

- We construct a double fibration

P : twistor space, F : correspondence space
- $H^{n}(P, \mathfrak{S})$ (e.g. vector bundles) $\stackrel{1: 1}{\longleftrightarrow}$ sols. to field equations.
- Our new contributions:
- Use non-abelian gerbes
- New twistor space
- Can describe in this way:
- $6 d(2,0)$ superconformal equations of motion
- self-dual strings

Context:

The ABJM Model as a Higher Gauge Theory

- Most dualities in string theory between Yang-Mills theories.
- And in M-theory? M2-branes: Chern-Simons-matter theories M5-branes: Tensor-multiplet theories
- These can be put on equal footing. S Palmer\&CS, 1311.1997

Step 1: The ABJM gauge structures / hermitian 3-Lie algebras

- form differential crossed modules. S Palmer\&CS, 1203.5757
- but: $\mathrm{t}=0$, thus $F=\mathrm{t}(B)=0$.
- Recall: Lie algebra $\mathfrak{g} \rightarrow$ inner derivation dcm $\mathfrak{g} \xrightarrow{\mathrm{t}} \mathfrak{g}$
- dcm $\mathfrak{h} \xrightarrow{\mathrm{t}} \mathfrak{g} \rightarrow$ inner derivation d2-cm $\mathfrak{h} \xrightarrow{\mathrm{t}} \mathfrak{g} \ltimes \mathfrak{h} \xrightarrow{\mathrm{t}} \mathfrak{g}$

Explicitly:

$$
\left(\begin{array}{cc}
0 & \mathfrak{g l}(N, \mathbb{C}) \\
0 & 0
\end{array}\right) \xrightarrow{\mathrm{t}}\left(\begin{array}{cc}
\mathfrak{u}(N) & \mathfrak{g l}(N, \mathbb{C}) \\
0 & \mathfrak{u}(N)
\end{array}\right) \xrightarrow{\mathrm{t}}\left(\begin{array}{cc}
\mathfrak{u}(N) & 0 \\
0 & \mathfrak{u}(N)
\end{array}\right)
$$

Step 2: Implement the fake curvature conditions

- Here, we are working with a differential 2-crossed module.
- Gauge potentials: A, B, C. Curvatures: F, H, G.
- Conditions $\mathcal{F}=F-\mathrm{t}(B)=0, \mathcal{H}=H-\mathrm{t}(C)=0$
- Action:

$$
\begin{aligned}
& S_{\mathrm{ABJM}}=\int_{\mathbb{R}^{1,2}} \operatorname{tr}\left(\frac{k}{4 \pi} \eta A \wedge\left(\mathrm{~d} A+\frac{1}{3}[A, A]\right)\right. \\
&\left.-\nabla Z_{A}^{\dagger} \wedge * \nabla Z^{A}-* \mathrm{i} \bar{\psi}^{A} \wedge \not \nabla \psi_{A}\right)+V \\
& S_{\mathrm{HGT}}=S_{\mathrm{ABJM}}+\int_{\mathbb{R}^{1,2}} \operatorname{tr}\left(\lambda_{1}^{\dagger} \wedge(\right.F-\mathrm{t}(B)) \\
&\left.+\lambda_{2}^{\dagger}(H-\mathrm{t}(C))+\lambda_{3}^{\dagger} \mathrm{t}\left(\lambda_{2}\right)\right)
\end{aligned}
$$

- This yields ABJM eoms + fake curvature constraints

Application:

Higher Monopole and Instanton Solutions

Review: The BPST Instanton

The BPST instanton can be conveniently written using quaternions.
Recall the quaternionic form of the elementary instanton on S^{4} :
Conformal geometry of S^{4}
Describe S^{4} by $\mathbb{H} \cup\{\infty\}$. Coordinates: $x=x^{1}+\mathrm{i} x^{2}+\mathrm{j} x^{3}+\mathrm{k} x^{4}$. Conformal transformations:

$$
x \mapsto(a x+b)(c x+d)^{-1}, \quad a, b, c, d \in \mathbb{H}
$$

SU(2)-Instanton:

$$
A=\operatorname{im}\left(\frac{\bar{x} \mathrm{~d} x}{1+|x|^{2}}\right) \Rightarrow F=\operatorname{im}\left(\frac{\mathrm{d} \bar{x} \wedge \mathrm{~d} x}{\left(1+|x|^{2}\right)^{2}}\right)
$$

SU(2)-Anti-Instanton:

$$
A=\operatorname{im}\left(\frac{x \mathrm{~d} \bar{x}}{1+|x|^{2}}\right) \Rightarrow F=\operatorname{im}\left(\frac{\mathrm{d} x \wedge \mathrm{~d} \bar{x}}{\left(1+|x|^{2}\right)^{2}}\right)
$$

Belavin et al. 1975, Atiyah 1979

Elementary Solution: The Higher Instanton

The quaternionic form of the BPST instanton solution translates perfectly.
Solution to the higher instanton equations $H=\star H, F=\mathrm{t}(B)$:

- Same inner derivation 2-crossed module as for ABJM
- Recall BPST instanton:

$$
A=\operatorname{im}\left(\frac{\bar{x} \mathrm{~d} x}{1+|x|^{2}}\right) \Rightarrow F=\operatorname{im}\left(\frac{\mathrm{d} \bar{x} \wedge \mathrm{~d} x}{\left(1+|x|^{2}\right)^{2}}\right)
$$

- Solution in coordinates $x=x^{M} \sigma_{M}, \hat{x}=x^{M} \bar{\sigma}_{M}$

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
\frac{\hat{x} \mathrm{~d} x}{1+|x|^{2}} & 0 \\
0 & \frac{\mathrm{~d} x \hat{x}}{1+|x|^{2}}
\end{array}\right) B=F+\left(\begin{array}{cc}
0 & \frac{\hat{x} \mathrm{~d} x \wedge \mathrm{~d} \hat{x}}{\left(1+|x|^{2}\right)^{2}} \\
0 & 0
\end{array}\right) \\
& F:=\mathrm{d} A+A \wedge A=\left(\begin{array}{cc}
\frac{\mathrm{d} \hat{x} \wedge \mathrm{~d} x}{\left(1+|x|^{2}\right)^{2}}+\frac{2 \mathrm{~d} \hat{x} \wedge \mathrm{~d} \hat{x} x}{\left(1+|x|^{2}\right)^{2}} & 0 \\
0 & -\frac{\mathrm{d} x \wedge \mathrm{~d} \hat{x}}{\left(1+|x|^{2}\right)^{2}}
\end{array}\right) \\
& H:=\mathrm{d} B+A \triangleright B=\left(\begin{array}{cc}
0 & \frac{\mathrm{~d} \hat{x} \wedge \mathrm{~d} x \wedge \mathrm{~d} \hat{x}}{\left(1+|x|^{2}\right)^{3}} \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Review: The 't Hooft-Polyakov Monopole

The 't Hooft-Polyakov Monopole is a non-singular solution with charge 1.
Recall 't Hooft-Polyakov monopole (e_{i} generate $\left.\mathfrak{s u}(2), \xi=v|x|\right)$:
$\Phi=\frac{e_{i} x^{i}}{|x|^{2}}(\xi \operatorname{coth}(\xi)-1), \quad A=\varepsilon_{i j k} \frac{e_{i} x^{j}}{|x|^{2}}\left(1-\frac{\xi}{\sinh (\xi)}\right) \mathrm{d} x^{k}$

- At $S_{2}^{\infty}: \Phi \sim g(\theta) e_{3} g(\theta)^{1}$.

$$
g(\theta): S_{\infty}^{2} \rightarrow \mathrm{SU}(2) / \mathrm{U}(1): \text { winding } 1
$$

- Charge $q=1$ with

$$
2 \pi q=\frac{1}{2} \int_{S_{\infty}^{2}} \frac{\operatorname{tr}\left(F^{\dagger} \Phi\right)}{\|\Phi\|} \quad \text { with } \quad\|\Phi\|:=\sqrt{\frac{1}{2} \operatorname{tr}\left(\Phi^{\dagger} \Phi\right)}
$$

- Higgs field non-singular:

Elementary Solutions: A Non-Abelian Self-Dual String

Self-Dual String $\left(e_{\mu}\right.$ generate $\left.\mathrm{DCM} \mathfrak{s u}(2) \times \mathfrak{s u}(2) \xrightarrow{\mathrm{t}} \mathbb{R}^{4}, \xi=v|x|^{2}\right)$:
$\Phi=\frac{e_{\mu} x^{\mu}}{|x|^{3}} f(\xi), \quad B_{\mu \nu}=\varepsilon_{\mu \nu \kappa \lambda} \frac{e_{\kappa} x^{\lambda}}{|x|^{3}} g(\xi), \quad A_{\mu}=\varepsilon_{\mu \nu \kappa \lambda} D\left(e_{\nu}, e_{\kappa}\right) \frac{x^{\lambda}}{|x|^{2}} h(\xi)$

- At $S_{3}^{\infty}: \Phi \sim g(\theta) \triangleright e_{4} . g(\theta): S_{\infty}^{3} \rightarrow \mathrm{SU}(2)$ has winding 1 .
- Charge $q=1$:

$$
(2 \pi)^{3} q=\frac{1}{2} \int_{S_{\infty}^{3}} \frac{(H, \Phi)}{\|\Phi\|} \quad \text { with } \quad\|\Phi\|:=\sqrt{\frac{1}{2}(\Phi, \Phi)}
$$

- Higgs field non-singular:

- 6d $(1,0)$ models from tensor hierarchies Samtleben et al., 1108.4060, also 1108.5131
- $(1,0)$ tensor + vector multiplets with new gauge structure
- These are higher gauge theories.
- New gauge structure: symplectic Lie n-algebroids S Palmer\&CS 1308.2622, Samtleben et al. 1403.7114
- Geometric Quantization (Noncommutative/Fuzzy spaces)
- Analogues by quantizing "Poisson Lie 2-algebras"
- This yields nonassociative geometry.
- A categorified IKKT model can be written down.
- This model has nonassociative geometry solutions.
- Background expansion: nonassociative HGT

P Ritter\&CS 1308.4892

- HGT a very nice playground, particularly for PhD students:
- Higher Magnetic Bags
- Proof of Higher Poincaré Lemma

S Palmer\&CS 1204.6685
G Demessie\&CS 1406.5342

Summary:

\checkmark Clear physical and mathematical motivation to study HGT
\checkmark Generalized ADHMN-like construction on loop space
\checkmark Various twistor constructions with non-abelian gerbes
$\checkmark 6 \mathrm{~d}$ superconformal tensor multiplet equations
$\checkmark(1,0)$ models of Samtleben et al. is HGT
\checkmark ABJM model is a HGT
\checkmark Explicit higher monopole and instanton solutions
Future directions:
\triangleright Twistor spaces of loop spaces
\triangleright Continue translation of higher ADHM-constructions
\triangleright Geometric Quant. with higher Hilbert spaces
\triangleright Study categorified IKKT model

Higher Gauge Theory and M-theory

Christian Sämann

School of Mathematical and Computer Sciences Heriot-Watt University, Edinburgh
Gauge Theories in Higher Dimensions, Hannover, 11.08.2014

