G_2 -instantons over twisted connected sums

Henrique N. Sá Earp (inc. joint work with Marcos Jardim, Thomas Walpuski and Daniela Prata)

Group GTAG - Gauge theory and algebraic geometry Unicamp, SP - Brazil

• •

13 August 2014

Gauge theory

Special holonomy

Berger's list

The G_2 – structure

 $\begin{array}{c} G_2 - \text{instantons} \\ \longleftrightarrow \text{HYM} \end{array}$

Twisted connected sums

The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

Gauge theory in higher dimensions

Gauge theory

Gauge theory in higher dimensions

Gauge theory

Special holonomy

Berger's list

The $G_2-{\rm structure}$

 $\begin{array}{c} G_2 - \text{instantons} \\ \longleftrightarrow & \text{HYM} \end{array}$

Twisted connected sums

The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory E.g.: Riemannian manifold (X, g) of dimension $n \ge 4$, SU(m)-bundle $E \rightarrow X$, A connection on E.

The Yang-Mills functional:

$$YM(A) \doteq \|F_A\|^2 = \int_X \langle F_A \wedge *F_A \rangle_{\mathfrak{su}(m)},$$

induces the (Euler-Lagrange) Yang-Mills equation

$$d_A^*F_A = 0.$$

n = 4: $\Omega^2 = \Omega^2_+ \oplus \Omega^2_-,$ $F_A = \pm * F_A$ (SD or ASD) sols. n > 4: ?

Special holonomy

Gauge theory in higher dimensions

Gauge theory

Special holonomy

Berger's list

The G_2- structure

 $\begin{array}{c} G_2 - \text{instantons} \\ \longleftrightarrow & \text{HYM} \end{array}$

Twisted connected sums

The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory Tian et al.: a *closed* (n-4)-form Θ on X generalises (A)SD:

 $F_A \wedge \Theta = - * F_A \qquad [\Theta - \text{instanton}].$

¿How to find closed tensors?

Holonomy theorem:

$$\begin{array}{ccc} \exists S \in \Gamma\left(\mathcal{T}\right) \quad \text{s.t.} \quad \nabla S = 0 \\ & \updownarrow \\ \exists x \in X, S_x \in \mathcal{T}_x \quad \text{s.t.} \quad \operatorname{Hol}\left(g\right).S_x = S_x \end{array}$$

with $\mathcal{T} \doteq (\bigotimes^{\bullet} TX \otimes \bigotimes^{\bullet} T^*X).$

Berger's list

Gauge theory in higher dimensions

Gauge theory

Special holonomy

Berger's list

The G_2 – structure G_2 – instantons

 $\longleftrightarrow \mathsf{HYM}$

Twisted connected sums

The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

 (M^n, g) simply-connected Riemannian manifold, g irreducible and nonsymmetric; then exactly one of the following holds:

1. Hol
$$(g) = SO(n)$$

2. $n = 2m, m \ge 2$: Hol $(g) = U(m) \subset SO(2m)$
3. $\mathbf{n} = 2\mathbf{m}, \mathbf{m} \ge 2$: Hol $(g) = \mathbf{SU}(\mathbf{m}) \subset \mathbf{SO}(2\mathbf{m})$
4. $n = 4m, m \ge 2$: Hol $(g) = Sp(m) \subset SO(4m)$
5. $n = 4m, m \ge 2$: Hol $(g) = Sp(m) Sp(1) \subset SO(4m)$
6. $\mathbf{n} = \mathbf{7}, \mathbf{m} \ge 2$: Hol $(g) = \mathbf{G_2} \subset \mathbf{SO}(\mathbf{7})$
7. $n = 8, m \ge 2$: Hol $(g) = \mathbf{Spin}(\mathbf{7}) \subset SO(8)$.

We will be interested in the interplay between the following instances:

$$\begin{array}{ll} \operatorname{Hol}\left(g\right) = SU(3) & (\operatorname{Calabi-Yau}\ 3-\operatorname{folds}): & \omega^{1,1}, \Omega^{3,0} \\ \operatorname{Hol}\left(g\right) \subseteq G_2 & (G_2-\operatorname{manifolds}): & \varphi^3 & (\operatorname{and}\ast\varphi^4) \end{array}$$

The G_2 -structure

Gauge theory in higher dimensions

Gauge theory

Special holonomy

Berger's list

The $G_2-{\rm structure}$

 $\begin{array}{c} G_2 - \text{instantons} \\ \longleftrightarrow & \text{HYM} \end{array}$

Twisted connected sums

The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

$$\varphi_0 = (e^{12} - e^{34})e^5 + (e^{13} - e^{42})e^6 + (e^{14} - e^{23})e^7 + e^{567}$$

 $\{e^i\}_{i=1,\dots,7}$ canonical basis of $(\mathbb{R}^7)^*$, $e^{ij} = e^i e^j \doteq e^i \wedge e^j$ etc.

$$G_2 \doteq \{g \in GL(7) \mid g^* \varphi_0 = \varphi_0\}$$

A
$$G_2$$
-structure on M^7 is a form $\varphi \in \Omega^3\left(M\right)$ s.t.,

$$\varphi_p = f_p^*\left(\varphi_0\right)$$

for some frame $f_p: T_pM \to \mathbb{R}^7, \quad \forall p \in M.$

If $\nabla \varphi = 0$ (torsion-free), (M^7, φ) is a *G*₂-manifold; then we have

$$d\varphi = 0, \quad d *_{\varphi} \varphi = 0 \quad \text{and} \quad \operatorname{Hol}(\varphi) \subseteq G_2.$$

Gauge theory

Special holonomy

Berger's list

The G_2 – structure

 $\begin{array}{c} G_2 - \text{instantons} \\ \longleftrightarrow & \text{HYM} \end{array}$

Twisted connected sums

The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

 (W, ω) Kähler manifold, $\mathcal{E} \to W$ holomorphic vector bundle:

 $\left\{\begin{array}{c} \text{Hermitian metrics} \\ H \text{ on } \mathcal{E} \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{unitary (Chern) connections} \\ A = A_H \text{ on } \mathcal{E} \end{array}\right\};$

in particular, $F_{A_H} \in \Omega^{1,1}(\mathfrak{g})$. Then H is *Hermitian Yang-Mills (HYM)* if the curvature has vanishing ω -trace:

$$\hat{F}_A \doteq (F_A, \omega) = 0.$$

Proposition. A HYM connection A on a hol. v.b. $\mathcal{E} \to W$ over a CY 3-fold W lifts to a G_2 -instanton on $p_1^*\mathcal{E} \to M = W \times S^1$, where

$$\begin{array}{rcl} \varphi &=& \omega \wedge d\theta + \operatorname{Im} \Omega, \\ *\varphi &=& \frac{1}{2} \omega \wedge \omega - \operatorname{Re} \Omega \wedge d\theta. \end{array}$$

Twisted connected sums

Ingredients

Asymptotically

cylindrical Calabi-Yau 3-folds

Matching pairs of building blocks

Twisted gluing for Hol $(\varphi) = G_2$

The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

Twisted connected sums

Ingredients

Gauge theory in higher dimensions

Twisted connected sums

Ingredients

Asymptotically cylindrical Calabi-Yau 3-folds Matching pairs of building blocks

```
Twisted gluing for \operatorname{Hol}(\varphi) = \operatorname{G}_2
```

```
The Hermitian Yang-Mils problem
```

Construction of asymptotically stable bundles

```
A polycyclic Hoppe theory
```

 $(X^3, \bar{\omega}, I)$ compact, simply-connected, Kähler with:

- $\exists K3$ -surface $D \in |-K_X|$ with $\mathcal{N}_{D/X}$ (hol.) trivial;
- The complement $W = X \setminus D$ has finite $\pi_1(W)$.

Think of W as $W = W_0 \cup W_\infty$, where W_0 is compact with boundary and

 $\partial W_0 \simeq D \times S^1, \quad W_\infty \simeq \left(D \times S^1 \times \mathbb{R}_+ \right).$

Twisted connected sums

Ingredients

Asymptotically cylindrical Calabi-Yau 3-folds

Matching pairs of building blocks

Twisted gluing for Hol $(\varphi) = G_2$

The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

Theorem (Calabi-Yau-Tian-Kovalev-CHNP). For $W = X \setminus D$ as above:

- 1. W admits a complete Ricci-flat Kähler structure ω ;
- 2. Hol $(\omega) = SU(3)$, i.e. W is Calabi-Yau;
- 3. along the tubular end $D \times S^1_{\alpha} \times (\mathbb{R}_+)_s$, the Kähler form ω and the holomorphic volume form Ω are exponentially asymptotic¹ to those of the product Ricci-flat Kähler metric on D:

$$\begin{aligned} \omega|_{W_{\infty}} &= \kappa_I + ds \wedge d\alpha + d\psi \\ \Omega|_{W_{\infty}} &= (ds + \mathbf{i}d\alpha) \wedge (\kappa_J + \mathbf{i}\kappa_K) + d\Psi \end{aligned}$$

We say (W, ω) is an *(exponentially)* asymptotically cylindrical Calabi-Yau *(ACyICY)* 3-fold.

NB.: κ_I , κ_J and κ_K (hyper-)Kähler forms on the K3 surface D.

¹with d $\psi, d\Psi = O\left(e^{-s}
ight)$.

Twisted connected sums

Ingredients

Asymptotically cylindrical Calabi-Yau

3-folds

Matching pairs of building blocks

Twisted gluing for Hol $(\varphi) = G_2$

The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

A *building block* is a nonsingular algebraic 3-fold X with projective morphism $f: X \to \mathbb{P}^1$ such that $D := f^*(\infty) \in |-K_X|$ is a nonsingular K3 surface (...). Building blocks admit ACylCY metrics. *Matching data* for a pair of building blocks (X_{\pm}, D_{\pm}) :

$$\mathbf{m} = \{(\omega_{I,\pm}, \omega_{J,\pm}, \omega_{K,\pm}), \mathfrak{r}\}$$

choice of hyperkähler structures on D_{\pm} such that $[\omega_{I,\pm}] = [\bar{\omega}|_{D_{\pm}}]$, hyperkähler rotation $\mathfrak{r}: D_+ \to D_-$, i.e., diffeo $\mathfrak{r}: D_+ \to D_-$ s.t.

$$\mathfrak{r}^*\omega_{I,-}=\omega_{J,+}, \quad \mathfrak{r}^*\omega_{J,-}=\omega_{I,+} \quad \text{and} \quad \mathfrak{r}^*\omega_{K,-}=-\omega_{K,+}.$$

These can be obtained as $X := \operatorname{Bl}_C V$ for e.g. (weak) Fanos:

$$V = \mathbb{P}^{3}$$

$$V \subset \mathbb{P}^{4}, \deg(V) = 2, 3$$

$$V = \mathbb{P}^{2} \times \mathbb{P}^{1}$$

$$V_{22} \hookrightarrow \mathbb{P}^{13} \quad (g = 12) :-)$$

Twisted gluing for $\operatorname{Hol}(\varphi) = G_2$

Gauge theory in higher dimensions

Twisted connected sums

Ingredients

Asymptotically

cylindrical Calabi-Yau 3-folds

Matching pairs of building blocks

Twisted gluing for $\operatorname{Hol}\left(\varphi\right)=\operatorname{G}_{2}$

The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

Given a suitable pair of 3-folds W_+ and W_- as above, one obtains a compact oriented 7-manifold

$$Y_S = \left(W_{S,+} \times S^1 \right) \cup_{\mathfrak{r}} \left(W_{S_-} \times S^1 \right) =: W_+ \widetilde{\#}_S W_-.$$

'Stretching the neck', one equips Y_S with a $G_2-{\rm structure}\;\varphi_S$ satisfying exactly

$$\operatorname{Hol}(\varphi_S) = \operatorname{G}_2.$$

Twisted connected sums

The Hermitian Yang-Mils problem

Outline

Asymptotically stable bundles

Smooth solutions on W for all time

Enough of PDE!

Instanton gluing theorem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

The Hermitian Yang-Mils problem

Outline

Gauge theory in higher dimensions

Twisted connected sums The Hermitian Yang-Mils problem

Outline

Asymptotically stable bundles Smooth solutions on W for all time

Enough of PDE!

Instanton gluing theorem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

Goal: to solve the HYM problem $\hat{F}_H = 0$ on suitable bundles over these ACyICYs, *ergo* G_2 -instantons on the pull-back over $W \times S^1$. **Strategy:** consider first the 'nonlinear heat flow'

$$(\dagger) \begin{cases} H^{-1} \frac{\partial H}{\partial t} = -2\mathbf{i}\hat{F}_H \\ H(0) = H_0 \end{cases} \quad \text{on} \quad W_S \times [0, T[$$

over a truncation, with (Dirichlet) boundary condition

$$H\mid_{\partial W_S} = H_0\mid_{\partial W_S}$$

where H_0 is a fixed *reference (Hermitian) metric* on $\mathcal{E} \to W$ with 'good' asymptotic behaviour. Then

$$H = \lim_{t < T \to \infty} \left(\lim_{S \to \infty} H_S(t) \right).$$

Asymptotically stable bundles

Gauge theory in higher dimensions

Twisted connected sums

The Hermitian Yang-Mils problem

Outline

Asymptotically stable bundles

Smooth solutions on \ensuremath{W} for all time

Enough of PDE!

Instanton gluing theorem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

Definition. A bundle $\mathcal{E} \to W$ is stable at infinity (or asymptotically stable) if it is the restriction of a hol.v.b. $\mathcal{E} \to X$ satisfying:

 ${\cal E}$ is indecomposable;

 $\mathcal{E}|_D$ is stable, hence also $\mathcal{E}|_{D_z}$ for $|z| < \delta$.

Definition. A *reference metric* H_0 on an asymptotically stable bundle $\mathcal{E} \to W$ is (the restriction of) a smooth Hermitian metric on $\mathcal{E} \to X$ such that:

- $H_0|_{D_z}$ are the HYM metrics on $\mathcal{E}|_{D_z}$, $0 \le |z| < \delta$;
- Ho has finite energy: $\|\hat{F}_{H_0}\|_{L^2(W,\omega)} < \infty$.

Smooth solutions on \boldsymbol{W} for all time

Gauge theory in higher dimensions

Twisted connected sums The Hermitian Yang-Mils problem

- Outline
- Asymptotically stable

bundles

Smooth solutions on ${\boldsymbol W}$ for all time

Enough of PDE!

Instanton gluing theorem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

Following S. Donaldson, C. Simpson et al.:

- Each $H_{S}\left(t
 ight)$ exists and is unique and smooth, $\forall t\in\left]0,\infty\right[$.
- $H_{S}(t)$ are bounded in $L_{2}^{p}(W_{S})$ uniformly in $t, \forall 1 \leq p < \infty$.
- Consequently, $H_S(T)$ is of class C^1 [Sobolev embedding] and $\|F_{H_S}\|_{L^p(W_S)} < \infty, \quad \forall 1 \le p < \infty.$
- (...) gruesome analysis (...)
 - I F_{H_S} is actually bounded in $L^\infty_k\left(W_S
 ight)$ [bounds on Heat Kernel].
 - I H(T) is smooth [elliptic regularity].

Proposition. Given any T > 0, $\exists ! \{H(t)\}$ on $\mathcal{E} \to W$, solution of the evolution equations

$$\begin{cases} H^{-1}\frac{\partial H}{\partial t} = -2\mathbf{i}\hat{F}_H \\ H(0) = H_0 \end{cases} \quad \text{on} \quad W \times [0, T]$$

with 'good' asymptotic behaviour.

Enough of PDE!

Gauge theory in higher dimensions

Twisted connected sums The Hermitian Yang-Mils problem

Outline

Asymptotically stable bundles Smooth solutions on W for all time

Enough of PDE!

Instanton gluing theorem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

. . .

Theorem 1 (S., 2011). Let $\mathcal{E} \to W$ be asymptotically stable, equipped with a reference metric H_0 , over an ACyICY 3–fold W as given by the C-Y-T-K-CHNP theorem, and let $\{H_t\}_{t\in]0,\infty[}$ be the 1–parameter family of Hermitian metrics on \mathcal{E} solving the evolution equation (†) over W;

then the limit $H = \lim_{t \to \infty} H_t$ exists and is a smooth HYM metric on \mathcal{E} , exponentially asymptotic in all derivatives to H_0 along the tubular end:

$$\hat{F}_H = 0, \quad H \xrightarrow[S \to \infty]{C^{\infty}} H_0.$$

so we have a G_2 -instanton on $p_1^* \mathcal{E} \to W \times S^1 !!!$

Instanton gluing theorem

Gauge theory in higher dimensions

Twisted connected sums The Hermitian Yang-Mils problem

Outline

Asymptotically stable bundles

Smooth solutions on ${\boldsymbol W}$ for all time

Enough of PDE!

Instanton gluing theorem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

Theorem 2 (S.-Walpuski, 2013). $(X_{\pm}, D_{\pm}, \mathbf{m})$ matching pair of building blocks, $(Y, \varphi_S) := X_+ \tilde{\#}_S X_-$ the compact 7–manifold and $\mathcal{E}_{\pm} \to X_{\pm}$ holomorphic bundles s.t.

- Stability: *E*_±|_{*D*_±} is stable with corresponding ASD instanton *A*_{∞,±}.
 Compatibility: isomorphism *v*̄: *E*₊|_{*D*₊} → *E*₋|_{*D*₋} covering *v* s.t. *v*̄**A*_{∞,-} = *A*_{∞,+}.
 - Rigidity: no infinitesimal deformations of \mathcal{E}_{\pm} fixing restriction to D_{\pm} :

$$H^1(X_{\pm}, \mathcal{E}nd_0(\mathcal{E}_{\pm})(-D_{\pm})) = 0.$$

Transversality: $\operatorname{im}(\lambda_+) \cap \operatorname{im}(\overline{\mathfrak{r}}^* \circ \lambda_-) = \{0\} \subset H^1_{A_{\infty,+}}$ for

$$\lambda_{\pm} \colon H^1(X_{\pm}, \mathcal{E}nd_0(\mathcal{E}_{\pm})) \to H^1_{A_{\infty,\pm}} := \ker \left(\mathrm{d}^*_{A_{\infty,\pm}} \oplus \mathrm{d}^+_{A_{\infty,\pm}} \right) \Big|_{D_{\pm}}$$

Then there exists a non-trivial PU(n)-bundle E over Y, a constant $S_1 \ge S_0$ and for each $S \ge S_1$ an irreducible (...) G_2 -instanton A_S on E over (Y, φ_S) .

Twisted connected sums The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

Slope stability and normalisation Hoppe's stability criterion

Hoppe's criterion, II

Hoppe's criterion, III

Asymptotically stable

bundles

over cyclic Fano 3-folds :

Trivial example: null-correlation bundle over \mathbb{P}^3

A polycyclic Hoppe theory

Construction of asymptotically stable bundles

Slope stability and normalisation

Gauge theory in higher dimensions

Twisted connected sums The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

Slope stability and normalisation Hoppe's stability criterion

Hoppe's criterion, II

Hoppe's criterion, III

Asymptotically stable

bundles

over cyclic Fano 3-folds Trivial example:

null-correlation bundle over \mathbb{P}^3

A polycyclic Hoppe theory

Recall the *slope* of a coherent sheaf is

$$u(\mathcal{F}) := \frac{\deg(\mathcal{F})}{\operatorname{rk}(\mathcal{F})}.$$

A holomorphic vector bundle $\mathcal{E} \to X$ (think X = X) is said to be *stable* if, for every coherent subsheaf $\mathcal{F} \hookrightarrow \mathcal{E}$,

$$\mu\left(\mathcal{F}\right) < \mu(\mathcal{E}).$$

A smooth projective variety X is *cyclic* if $Pic(X) = \mathbb{Z}$; then

$$\deg(\mathcal{E}) := c_1(\mathcal{E}) \cdot \mathcal{O}_X(1)^{\otimes (\dim X - 1)}$$

The normalisation of $\mathcal{E} \to X$ is $\mathcal{E}_{norm} := \mathcal{E}(-k_{\mathcal{E}})$, with $k_{\mathcal{E}} := \lceil \mu(\mathcal{E}) \rceil \in \mathbb{Z}$. Clearly

 $-r+1 \le c_1(\mathcal{E}(-k_{\mathcal{E}})) = c_1(\mathcal{E}) - r.k_{\mathcal{E}} \le 0.$

Twisted connected sums The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

Slope stability and normalisation Hoppe's stability

criterion

Hoppe's criterion, II

Hoppe's criterion, III

Asymptotically stable bundles

over cyclic Fano 3-folds

Trivial example: null-correlation bundle over \mathbb{P}^3

A polycyclic Hoppe theory

Criterion (Hoppe). Let $\mathcal{E} \to \mathbb{P}^n$ be a holomorphic vector bundle of rank r = 2 and $c_1(\mathcal{E}) = 0$; then

$${\mathcal E}$$
 is stable $\, \Leftrightarrow h^0 \left({\mathcal E}
ight) = 0.$

Proof.

 $\begin{array}{l} (\Rightarrow) \text{ A section } s \in H^0(\mathcal{E}) \text{ would give a monomorphism } \mathcal{O}_{\mathbb{P}^n} \hookrightarrow \mathcal{E}, \\ \text{violating stability: } \mu(\mathcal{O}_{\mathbb{P}^n}) = 0 \geq 0 = \mu(\mathcal{E}). \\ (\Leftarrow) \text{ A destabilising sheaf } \mathcal{F} \hookrightarrow \mathcal{E} \text{ must be a line bundle.} \\ \text{Since } \operatorname{Pic}(\mathbb{P}^n) = \mathbb{Z}, \text{ we have } \mathcal{F} = \mathcal{O}_{\mathbb{P}^n}(a) \text{ whose inclusion is a section} \\ \text{ of } \mathcal{E}(-a). \text{ By assumption, we must have } a < 0, \text{ but then} \end{array}$

$$a = \mu(\mathcal{F}) \ge \mu(\mathcal{E}) = 0 > a \quad (!) \quad \Box$$

¿What about arbitrary degree?

Twisted connected sums The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

Slope stability and normalisation Hoppe's stability criterion

Hoppe's criterion, II

Hoppe's criterion, III Asymptotically stable bundles over cyclic Fano 3-folds Trivial example: null-correlation bundle

A polycyclic Hoppe theory

over \mathbb{P}^3

Criterion (Hoppe II). Let $\mathcal{E} \to X$ be a holomorphic vector bundle of rank r = 2 over a cyclic variety; then

$$\mathcal{E}$$
 is stable $\Leftrightarrow h^0\left(\mathcal{E}_{\mathsf{norm}}\right) = 0.$

Proof.

 $\begin{array}{l} (\Rightarrow) \text{ A section } s \in H^0(\mathcal{E}_{\operatorname{norm}}) \text{ would give } \mathcal{O}_X(k_{\mathcal{E}}) \hookrightarrow \mathcal{E}, \text{ violating} \\ \text{stability: } \mu(\mathcal{O}_X(k_{\mathcal{E}})) = k_{\mathcal{E}} \geq \frac{c_1(\mathcal{E})}{2} = \mu(\mathcal{E}). \\ (\Leftarrow) \text{ A destabilising sheaf } \mathcal{F} \hookrightarrow \mathcal{E} \text{ must be a line bundle.} \\ \text{Since Pic} (X) = \mathbb{Z}, \, \mathcal{F} = \mathcal{O}_X(a) \text{ which gives a section of} \\ \mathcal{E}(-a) = \mathcal{E}_{\operatorname{norm}} (k_{\mathcal{E}} - a). \text{ By hypothesis, we must have } a < k_{\mathcal{E}}, \text{ but then} \end{array}$

$$a = \mu(\mathcal{F}) \ge \mu(\mathcal{E}) > k_{\mathcal{E}} - 1 \ge a \quad (!) \quad \Box$$

¿What about arbitrary rank $r \geq 2$?

Hoppe's criterion, III

Gauge theory in higher dimensions

Twisted connected sums The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

Slope stability and normalisation Hoppe's stability criterion

Hoppe's criterion, II

Hoppe's criterion, III

Asymptotically stable bundles over cyclic Fano 3-folds Trivial example: null-correlation bundle over \mathbb{P}^3

A polycyclic Hoppe theory

Criterion (Hoppe III). Let $\mathcal{E} \to X$ be a holomorphic vector bundle of rank r over a cyclic variety; if

$$H^0((\wedge^s \mathcal{E})_{\text{norm}}) = 0 \text{ for } 1 \le s \le r - 1,$$

then \mathcal{E} is stable. Conversely, if \mathcal{E} is stable then $H^0(\mathcal{E}_{norm}) = 0$.

Proof.

 $\begin{array}{l} (\Rightarrow) \text{ A section of } \mathcal{E}_{\operatorname{norm}} \text{ would give } \mathcal{O}(k_{\mathcal{E}}) \hookrightarrow \mathcal{E}, \text{ violating stability:} \\ \mu(\mathcal{O}(k_{\mathcal{E}})) = k_{\mathcal{E}} \geq \frac{c_1(\mathcal{E})}{r} = \mu(\mathcal{E}). \\ (\Leftarrow) \text{ A destabilising } \mathcal{F} \hookrightarrow \mathcal{E} \text{ of rank } s \text{ gives } \wedge^s \mathcal{F} \hookrightarrow \wedge^s G, \text{ hence a section of } (\wedge^s \mathcal{E})(-a) \text{ with } \det \mathcal{F} = \mathcal{O}_X(a). \\ \text{ By hypothesis, we must have } a < k_s := k_{\wedge^s \mathcal{E}}, \text{ but then} \end{array}$

$$a = \deg \mathcal{F} \ge s.\mu(\mathcal{E}) = \mu(\wedge^s \mathcal{E}) > k_s - 1 \ge a \quad (!) \quad \Box$$

Asymptotically stable bundles over cyclic Fano 3-folds

Gauge theory in higher dimensions

Twisted connected sums The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

Slope stability and normalisation Hoppe's stability criterion

Hoppe's criterion, II

Hoppe's criterion, III

Asymptotically stable bundles over cyclic Fano 3-folds

Trivial example: null-correlation bundle over \mathbb{P}^3

A polycyclic Hoppe theory

Proposition 3 (Jardim-S.). Let $\mathcal{E} \to X^3$ be the vector bundle, over a nonsingular cyclic Fano variety, arising from an instanton monad of the form

$$0 \longrightarrow \mathcal{O}(-1)^{\oplus c} \xrightarrow{\alpha} \mathcal{O}^{\oplus 2+2c} \xrightarrow{\beta} \mathcal{O}(1)^{\oplus c} \longrightarrow 0$$
 (1)

$$\label{eq:constraint} \begin{split} \text{Then} \ \mathcal{E} := \frac{\ker\beta}{\mathrm{img}\,\alpha} \ \text{is stable. If moreover} \ D \subset X \ \text{is a cyclic divisor, then} \\ \mathcal{E}|_D \ \text{is stable.} \end{split}$$

Recall: Therefore \mathcal{E} is a G_2 -instanton bundle, by Theorem 1.

Gauge theory in higher dimensions	$X = \mathbb{P}^3, D \in -K_{\mathbb{P}^3} = \mathcal{O}(4) , r = 2, c = 1$
Twisted connected sums	
The Hermitian Yang-Mils problem	
Construction of asymptotically stable bundles	$(\mathcal{O}(5))$
Slope stability and normalisation Hoppe's stability criterion	(-3)
Hoppe's criterion, II	$0 \longrightarrow K(-4) \longrightarrow \mathcal{O}(-4)^{\oplus 4} \longrightarrow \mathcal{O}(-3) \longrightarrow 0$
Hoppe's criterion, III	
Asymptotically stable bundles over cyclic Fano 3-folds	
Trivial example: null-correlation bundle over ${\mathbb P}^3$	$0 \longrightarrow \mathcal{E}(-4) \longrightarrow \mathcal{E} \longrightarrow \mathcal{E} _D \longrightarrow 0$
A polycyclic Hoppe theory	\bigvee_{O}

¿How about larger Picard group, e.g. $\mathbb{P}^2 imes \mathbb{P}^1$?

Twisted connected sums

The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

Polytwists

L-degree

Examples

L-normalisation

L-slope and

L-normalisation

Polycyclic Hoppe criterion, I

chienon,

Proof

Example

The restriction property

Polycyclic Hoppe

criterion, II

Examples: extensions over $\mathbb{P}^2 \times \mathbb{P}^1$

The end

A polycyclic Hoppe theory

Polytwists

Gauge theory in higher dimensions

Twisted connected sums The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

Polytwists

L-degree

Examples

L-normalisation

L-slope and

L-normalisation

Polycyclic Hoppe

criterion, I

Proof

Example

The restriction property

Polycyclic Hoppe

criterion, II

The end

Examples: extensions over $\mathbb{P}^2 \times \mathbb{P}^1$

A projective variety X will be called *polycyclic* if $Pic(X) \simeq \mathbb{Z}^{l+1}$ for some $l \ge 0$. (e.g., all weak Fano 3-folds). Fix $Pic(X) = \langle \Upsilon_0, \Upsilon_1, \dots, \Upsilon_l \rangle$; given $\vec{p} \in \mathbb{Z}^{l+1}$ one denotes

$$\mathcal{O}(\vec{p}) = \mathcal{O}_X(p_0, \ldots, p_l) := \Upsilon_0^{\otimes p_0} \otimes \cdots \otimes \Upsilon_l^{\otimes p_l}.$$

Accordingly, given $\mathcal{E} \to X$, its *polytwist* is denoted by

$$\mathcal{E}(\vec{p}) = \mathcal{E}(p_0, \ldots, p_l) := \mathcal{E} \otimes \mathcal{O}(p_0, \ldots, p_l).$$

Set $[h_i] := c_1(\Upsilon_i) \in H^2(X, \mathbb{Z})$. For a torsion-free coherent sheaf \mathcal{F} of rank s and $[c_1(\mathcal{F})] = p_0[h_0] + \cdots + p_l[h_l]$:

$$\det \mathcal{F} = (\wedge^{s} \mathcal{F})^{\vee \vee} = \mathcal{O}(p_0, \dots, p_l),$$

L-degree

Gauge theory in higher dimensions

Twisted connected sums The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

Polytwists

L-degree

Examples

L-normalisation

L-slope and

L-normalisation

Polycyclic Hoppe

criterion, I

Proof

Example

The restriction property

Polycyclic Hoppe

criterion, II

Examples: extensions over $\mathbb{P}^2 \times \mathbb{P}^1$

The end

Fix polarisation
$$L \to X$$
; the L -degree of \mathcal{F} is

$$\deg_L \mathcal{F} := c_1(\mathcal{F}) \cdot L^{\dim X - 1}$$

and it induces a linear functional δ_L on the lattice \mathbb{Z}^{l+1} :

$$\delta_L(p_0,\ldots,p_l) := \deg_L \mathcal{O}(p_0,\ldots,p_l).$$

Denoting by $\{\overrightarrow{e_i}\}_{i=0,\dots,l}$ the canonical basis of \mathbb{Z}^{l+1} :

 $\deg_L \mathcal{F}(m\overrightarrow{e_i}) = \deg_L \mathcal{F} + m \left(\operatorname{rank} \mathcal{F} \right) \delta_L(\overrightarrow{e_i}).$

Examples

Gauge theory in higher dimensions

Twisted connected sums The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

Polytwists

L-degree

Examples

L-normalisation L-slope and L-normalisation Polycyclic Hoppe

criterion, I

Proof

Example

The restriction property

Polycyclic Hoppe criterion, II

Examples: extensions

over $\mathbb{P}^2 \times \mathbb{P}^1$

The end

Example 1 (Cartesian product). $X = \mathbb{P}^n \times \mathbb{P}^m$, $L := \mathcal{O}(1, 1)$:

$$\deg_L \mathcal{F} = \frac{n(n+1)\cdots(n+m-1)}{m!} \left(p_1 + \frac{m}{n}p_2\right).$$

Example 2 (Hirzebruch surfaces). $X = \Sigma_a := \mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(a) \oplus \mathcal{O}_{\mathbb{P}^1}),$ Pic $(X) = \mathbb{Z}.S_a \oplus \mathbb{Z}.H$, $L := \mathcal{O}(1, a + 1)$; if det $\mathcal{F} = \mathcal{O}(p_1, p_2)$, then

$$\deg_L \mathcal{F} = (a+1)p_1 + p_2 - ap_1 = p_1 + p_2.$$

Example 3 (Blow-up of \mathbb{P}^2 at l points). $X = \tilde{\mathbb{P}}^2(l)$, Pic $(X) = \mathbb{Z}.E_1 \oplus \cdots \oplus \mathbb{Z}.E_l \oplus \mathbb{Z}.H$, $L := \mathcal{O}(-1, \ldots, -1, l+1)$; if det $\mathcal{F} = \mathcal{O}(p_1, \ldots, p_{l+1})$ then

$$\deg_L \mathcal{F} = p_1 + \dots + p_l + (l+1)p_{l+1}.$$

L-normalisation

7

Gauge theory in higher dimensions

Twisted connected sums The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

Polytwists

L-degree

Examples

L-normalisation

L-slope and L-normalisation

Polycyclic Hoppe

criterion, I

Proof

Example

The restriction property

Polycyclic Hoppe

criterion, II

The end

Examples: extensions over $\mathbb{P}^2 \times \mathbb{P}^1$

For i = 0, ..., l: The i^{th} degree of \mathcal{F} and the i^{th} slope of \mathcal{F} are

$$\deg_{\overrightarrow{e_i}} \mathcal{F} := c_1(\Upsilon_i) \cdot L^{n-1} \quad \text{and} \quad \mu_{\overrightarrow{e_i}}(\mathcal{F}) := \frac{\deg_{\overrightarrow{e_i}} \mathcal{F}}{\operatorname{rank} \mathcal{F}}$$

so that
$$\deg_L \mathcal{F} = \sum_{i=0}^l \deg_{\overrightarrow{e_i}} \mathcal{F}$$
 and $\mu_L(\mathcal{F}) = \sum_{i=0}^l \mu_{\overrightarrow{e_i}}(\mathcal{F}).$

The L-normalisation of ${\mathcal F}$ is

$$\mathcal{F}_{L-\operatorname{norm}} := \mathcal{F}(-\vec{k}_{\mathcal{F}})$$

where $\vec{k}_{\mathcal{F}} \in \mathbb{Z}^{l+1}$ has components $k_{\mathcal{F}}^i := \left[\frac{\mu_{\overrightarrow{e_i}}(\mathcal{F})}{\delta_L(\overrightarrow{e_i})}\right]$. Indeed:

$$1 - r.\delta_L(\overrightarrow{e_i}) \le \deg_{\overrightarrow{e_i}} \mathcal{F}_{L-\operatorname{norm}} \le 0.$$

L-slope and L-normalisation

Gauge theory in higher dimensions

Twisted connected sums The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

Polytwists

L-degree

Examples

L-normalisation

L-slope and

L-normalisation

Polycyclic Hoppe criterion. I

Proof

Example

The restriction property

Polycyclic Hoppe

criterion, II

Examples: extensions over $\mathbb{P}^2 \times \mathbb{P}^1$

The end

The L-slope of a sheaf is essentially bounded below by its L-normalisation:

Lemma 1. Let $\vec{k}_{\mathcal{F}}$ be the *L*-normalisation vector of \mathcal{F} , and set $\delta_L(L) := \deg_L(L)$; then

$$u_L(\mathcal{F}) > \delta_L(\vec{k}_{\mathcal{F}}) - \delta_L(L) + t_{\mathcal{F}}$$

where
$$t_{\mathcal{F}} := \left[\mu_L(\mathcal{F}) - \delta_L(\vec{k}) + \delta_L(L) - 1 \right] \ge 0.$$

Twisted connected sums The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

Polytwists

L-degree

Examples

L-normalisation

L-slope and

L-normalisation Polycyclic Hoppe

criterion, I

Proof

Example

The restriction property

Polycyclic Hoppe criterion, II

Examples: extensions

over $\mathbb{P}^2 \times \mathbb{P}^1$

The end

Theorem 4 (Polycyclic Hoppe Criterion). Let $\mathcal{E} \to X$ be a holomorphic vector bundle of rank $r \ge 2$ over a polycyclic variety with $\operatorname{Pic}(X) \simeq \mathbb{Z}^{l+1}$ and polarisation L; define the constant $t_s := t_{\wedge^s \mathcal{E}}$ as by Lemma 1. If

$$H^0(X, (\wedge^s \mathcal{E})_{L-\operatorname{norm}}(\vec{p})) = 0 \qquad (*)$$

for all $\vec{p} \in \mathbb{Z}^{l+1}$ such that

$$\delta_L(\vec{p}) < \delta_L(L) - t_s \qquad (i)$$

then \mathcal{E} is stable. Conversely, if \mathcal{E} is stable then

 $H^0(X, \mathcal{E}(\vec{p})) = 0, \ \forall \vec{p} \text{ such that } \delta_L(\vec{p}) \leq -\mu_L(\mathcal{E}).$

Twisted connected sums The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

Polytwists

L-degree

Examples

L-normalisation

L-slope and

L-normalisation

Polycyclic Hoppe criterion. I

Proof

Example

The restriction property Polycyclic Hoppe criterion, II Examples: extensions over $\mathbb{P}^2 \times \mathbb{P}^1$

The end

Proof. Suppose $\mathcal{F} \hookrightarrow \mathcal{E}$ is a destabilising sheaf of rank s, such that $\det \mathcal{F} = \mathcal{O}_X(\vec{a})$. The inclusion induces a map $\wedge^s \mathcal{F} \hookrightarrow \wedge^s \mathcal{E}$ and so $H^0(X, (\wedge^s \mathcal{E})(-\vec{a})) \neq 0$, i.e.,

$$H^0(X, (\wedge^s \mathcal{E})_{L-\operatorname{norm}}(\vec{k}_s - \vec{a})) \neq 0.$$

If, for $\vec{p} := \vec{k}_s - \vec{a}$, there could occur $\delta_L(\vec{p}) \ge \delta_L(L) - t_s$, then Lemma 1 would imply a contradiction:

$$\delta_L(\vec{a}) = \deg \mathcal{F} \ge s \,\mu_L(\mathcal{E}) = \mu_L(\wedge^s \mathcal{E})$$

> $\delta_L(\vec{k}_s) - \delta_L(L) + t_s$
 $\ge \delta_L(\vec{a})$

using $\mu_L(\mathcal{E}) \leq \mu_L(\mathcal{F}) = \frac{\deg \mathcal{F}}{s}$; thus \vec{p} satisfies (i). Converse: trivial.

Example

Gauge theory in higher dimensions

Twisted connected sums The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

Polytwists

L-degree

Examples

L-normalisation

L-slope and

L-normalisation

Polycyclic Hoppe

criterion, I

Proof

Example

The restriction property Polycyclic Hoppe criterion, II Examples: extensions over $\mathbb{P}^2 \times \mathbb{P}^1$ The end **Proposition 5** (Jardim-S.). Let $\mathcal{E} \to \mathbb{P}^n \times \mathbb{P}^m$, $n \ge m > 1$ be a *L*-stable vector bundle obtained as the cohomology of a monad of the form

$$0 \to (-1,0)^{\oplus a} \xrightarrow{\alpha}{\overset{\oplus b}{\longrightarrow}} \oplus (-1,1)^{\oplus c} \xrightarrow{\beta} (0,1)^{\oplus a} \to 0$$
 (2)

such that $c \leq a$ and b + c - 2a = 2. If $D \subset X$ is a polycyclic divisor of positive polydegree, then $\mathcal{E}|_D$ is $\mathcal{O}_D(1,1)$ -stable.

; How about $\mathbb{P}^2 imes \mathbb{P}^1$!?

Twisted connected sums The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

Polytwists

L-degree

Examples

L-normalisation

L-slope and

L-normalisation

Polycyclic Hoppe

criterion, I

Proof

Example

The restriction property

Polycyclic Hoppe criterion, II Examples: extensions over $\mathbb{P}^2 \times \mathbb{P}^1$

¿What if the vanishing hypothesis is too strong e.g.: monad cohomologies over $\mathbb{P}^2 \times \mathbb{P}^1$!?

A polycyclic variety X will be called a *polycyclic family over a cyclic variety* Z if it admits a projective morphism $X \xrightarrow{\pi} Z$ s.t. $\pi^* \operatorname{Pic}(Z) \hookrightarrow \operatorname{Pic}(X)$ is an injection.

So $\operatorname{Pic}(X) = \langle \Upsilon_0, \Upsilon_1, \dots, \Upsilon_l \rangle \simeq \mathbb{Z}^{l+1}$ with $\Upsilon_0 \in |\pi^*(\mathcal{O}_Z(1))|$. Given a bundle $Q \to X$, fix $z \in Z$ s.t. $Y_z := \pi^{-1}(z)$ has $\operatorname{Pic}(Y_z) = \langle \Upsilon_1, \dots, \Upsilon_l \rangle$.

$$0 \longrightarrow Q(-d_0) \xrightarrow{\sigma_z} Q \xrightarrow{\rho_z} Q|_{Y_z} \longrightarrow 0$$

We will say that Q has the restriction property at z if sections restrict nontrivially to Y_z , i.e.,

$$0 \neq \sigma \in H^0(X, Q) \quad \Rightarrow \quad 0 \neq \rho_z(\sigma) \in H^0(Y_z, Q|_{Y_z}).$$
(3)

Polycyclic Hoppe criterion, II

Gauge theory in higher dimensions

Twisted connected sums The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

A polycyclic Hoppe theory

Polytwists

L-degree

Examples

L-normalisation

L-slope and

L-normalisation

Polycyclic Hoppe

criterion, I

Proof

Example

The end

The restriction property

Polycyclic Hoppe criterion, II

Examples: extensions over $\mathbb{P}^2 \times \mathbb{P}^1$

Definition 6. Let $Q \to Y$ be a holomorphic bundle over a polycyclic variety with $\operatorname{Pic}(Y) \simeq \mathbb{Z}^l$; then $\vec{v} \in \mathbb{Z}^l$ is a bounding vector for Q if, given $\vec{m} \in \mathbb{Z}^l$,

$$m_i \leq -v_i$$
 for some $1 \leq i \leq l \Rightarrow H^0(Y, Q(\vec{m})) = 0.$

Corollary 7. If, moreover, X is a polycyclic family over Z admitting a point $z \in Z$ such that, for each $1 \le s \le r - 1$, the bundle $\wedge^s G$ admits a bounding vector $\overrightarrow{v_s} = \overrightarrow{v_s}(z)$ and has the restriction property (3) at z, then it suffices to check (*) for all \overrightarrow{p} satisfying both (i) and:

$$p^i < k_s^i + v_s^i, \quad i = 1, \cdots, l \qquad (ii)$$

where $\vec{k}_s := \vec{k}_{\wedge^s G}$ is the *L*-normalisation vector.

Examples: extensions over $\mathbb{P}^2 \times \mathbb{P}^1$

Gauge theory in higher dimensions

Twisted connected sums The Hermitian Yang-Mils problem

Construction of asymptotically stable bundles

```
A polycyclic Hoppe theory
```

Polytwists

L-degree

Examples

L-normalisation

L-slope and

L-normalisation

Polycyclic Hoppe

criterion, I

Proof

Example

The restriction property

Polycyclic Hoppe criterion, II

Examples: extensions over $\mathbb{P}^2\,\times\,\mathbb{P}^1$

Given integers $p \ge s$ and $t \ge q + 2$, we obtain a bundle $\mathcal{E} \to \mathbb{P}^2 \times \mathbb{P}^1$ as a non-trivial extension of the form:

$$0 \longrightarrow \mathcal{O}(p,q) \longrightarrow \mathcal{E} \longrightarrow \mathcal{O}(s,t) \longrightarrow 0 .$$

A judicious choice of p, q, s, t guarantees that \mathcal{E} is asymptotically stable [Jardim-Prata-S.], e.g.:

$$0 \longrightarrow \mathcal{O}(-1, -1) \longrightarrow \mathcal{E} \longrightarrow \mathcal{O}(-1, 1) \longrightarrow 0$$

$$0 \longrightarrow \mathcal{O}(-1,0) \longrightarrow \mathcal{E} \longrightarrow \mathcal{O}(-1,2) \longrightarrow 0$$

$$0 \longrightarrow \mathcal{O}(-1,1) \longrightarrow \mathcal{E} \longrightarrow \mathcal{O}(-1,3) \longrightarrow 0$$

... and many more!

NB.: Required a *polycyclic* stability theory.

Gauge theory in higher dimensions	
Twisted connected sums	
The Hermitian Yang-Mils problem	
Construction of asymptotically stable bundles	
A polycyclic Hoppe theory	
Polytwists	
L-degree	
Examples	
L-normalisation L-slope and	
Polycyclic Hoppe	H
criterion, I	in
Proof	
Example	H.
The restriction property	to
Polycyclic Hoppe	10
Examples: extensions	М
over $\mathbb{P}^2 imes \mathbb{P}^1$	di
The end	

¿How about *rigid* asymptotically stable examples?

¿Can we extend the theory to 'asymptotically stable' reflexive sheaves?

Thank you!

H.N.S., G_2 -instantons over asymptotically cylindrical manifolds, to appear n Geometry & Topology (2011).

H.N.S. & Thomas Walpuski, G_2 –*instantons over twisted connected sums*, to appear in Geometry & Topology (2013).

Marcos Jardim, Daniela Prata & H.N.S., *Holomorphic bundles for higher dimensional gauge theory*, submitted (2014).