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E.g.: Riemannian manifold (X, g) of dimension n ≥ 4,

SU(m)−bundle E → X , A connection on E.

The Yang-Mills functional :

YM (A)
.
= ‖FA‖

2 =
∫

X
〈FA ∧ ∗FA〉su(m) ,

induces the (Euler-Lagrange) Yang-Mills equation

d∗AFA = 0.

n = 4 : Ω2 = Ω2
+ ⊕ Ω2

−, FA = ± ∗ FA (SD or ASD) sols.

n > 4 : ?
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Tian et al.: a closed (n− 4)−form Θ on X generalises (A)SD:

FA ∧Θ = − ∗ FA [Θ− instanton].

¿How to find closed tensors?

Holonomy theorem:

∃S ∈ Γ (T ) s.t. ∇S = 0
m

∃x ∈ X,Sx ∈ Tx s.t. Hol (g).Sx = Sx

with T
.
= (
⊗• TX ⊗

⊗• T ∗X).
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(Mn, g) simply-connected Riemannian manifold, g irreducible and

nonsymmetric; then exactly one of the following holds:

1. Hol (g) = SO (n)
2. n = 2m,m ≥ 2 : Hol (g) = U (m) ⊂ SO (2m)

3. n = 2m,m ≥ 2 : Hol (g) = SU (m) ⊂ SO (2m)

4. n = 4m,m ≥ 2 : Hol (g) = Sp (m) ⊂ SO (4m)
5. n = 4m,m ≥ 2 : Hol (g) = Sp (m)Sp (1) ⊂ SO (4m)

6. n = 7,m ≥ 2 : Hol (g) = G2 ⊂ SO (7)

7. n = 8,m ≥ 2 : Hol (g) = Spin (7) ⊂ SO (8) .

We will be interested in the interplay between the following instances:

Hol (g) = SU(3) (Calabi-Yau 3−folds): ω1,1,Ω3,0

Hol (g) ⊆ G2 (G2−manifolds): ϕ3 (and ∗ϕ4)
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ϕ0 =
(
e12 − e34

)
e5 +

(
e13 − e42

)
e6 +

(
e14 − e23

)
e7 + e567

{ei}i=1,...,7 canonical basis of
(
R7
)∗

, eij = eiej
.
= ei ∧ ej etc.

G2
.
= {g ∈ GL(7) | g∗ϕ0 = ϕ0}

A G2−structure on M7 is a form ϕ ∈ Ω3 (M) s.t.,

ϕp = f∗p (ϕ0)

for some frame fp : TpM → R7, ∀p ∈M .

If∇ϕ = 0 (torsion-free),
(
M7, ϕ

)
is a G2-manifold ; then we have

dϕ = 0, d ∗ϕ ϕ = 0 and Hol (ϕ) ⊆ G2.



G2−instantons ←→ HYM

Gauge theory in higher
dimensions

Gauge theory

Special holonomy

Berger’s list

TheG2−structure

G2−instantons
←→ HYM

Twisted connected sums

The Hermitian Yang-Mils
problem

Construction of
asymptotically stable
bundles

A polycyclic Hoppe
theory

7 / 38

(W,ω) Kähler manifold, E →W holomorphic vector bundle:

{
Hermitian metrics

H on E

}

←→

{
unitary (Chern) connections

A = AH on E

}

;

in particular, FAH ∈ Ω1,1 (g). Then H is Hermitian Yang-Mills (HYM) if

the curvature has vanishing ω−trace:

F̂A
.
= (FA, ω) = 0.

Proposition. A HYM connection A on a hol. v.b. E →W over a CY

3−fold W lifts to a G2−instanton on p∗1E →M = W × S1, where

ϕ = ω ∧ dθ + Im Ω,
∗ϕ = 1

2ω ∧ ω − Re Ω ∧ dθ.
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(
X3, ω̄, I

)
compact, simply-connected, Kähler with:

� ∃K3−surface D ∈ |−KX | withND/X (hol.) trivial;

� The complement W = X \D has finite π1 (W ).

Think ofW asW = W0∪W∞, whereW0 is compact with boundary and

∂W0 ' D × S1, W∞ '
(
D × S1 × R+

)
.

W0

. . .

W∞

∂WS

0 s� �

S
//

'
D

×

S 1
ˆ
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Theorem (Calabi-Yau-Tian-Kovalev-CHNP). For W = X \D as above:

1. W admits a complete Ricci-flat Kähler structure ω;

2. Hol (ω) = SU (3), i.e. W is Calabi-Yau;

3. along the tubular end D × S1
α × (R+)s, the Kähler form ω and the

holomorphic volume form Ω are exponentially asymptotic1 to those of

the product Ricci-flat Kähler metric on D:

ω|W∞ = κI + ds ∧ dα+ dψ

Ω|W∞ = (ds+ idα) ∧ (κJ + iκK) + dΨ.

We say (W,ω) is an (exponentially) asymptotically cylindrical Calabi-Yau

(ACylCY) 3−fold.

NB.: κI , κJ and κK (hyper-)Kähler forms on the K3 surface D.

1with dψ, dΨ = O
(
e−s
)
.
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A building block is a nonsingular algebraic 3−fold X with projective

morphism f : X → P1 such that D := f∗(∞) ∈ |−KX | is a

nonsingular K3 surface (. . . ). Building blocks admit ACylCY metrics.

Matching data for a pair of building blocks (X±, D±):

m = {(ωI,±, ωJ,±, ωK,±), r}

� choice of hyperkähler structures on D± such that [ωI,±] = [ω̄|D± ],
� hyperkähler rotation r : D+ → D− , i.e., diffeo r : D+ → D− s.t.

r∗ωI,− = ωJ,+, r
∗ωJ,− = ωI,+ and r∗ωK,− = −ωK,+.

These can be obtained as X := BlCV for e.g. (weak) Fanos:

� V = P3

� V ⊂ P4, deg(V ) = 2, 3
� V = P2 × P1

� V22 ↪→ P13 (g = 12) :-)
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Given a suitable pair of 3-folds W+ and W− as above, one obtains a

compact oriented 7−manifold

YS =
(
WS,+ × S

1
)
∪r
(
WS− × S

1
)

=: W+#̃SW−.

‘Stretching the neck’, one equips YS with a G2−structure ϕS satisfying

exactly

Hol (ϕS) = G2.

×
S1

W+

YS,+

[S,S+1]

×
S1

W−

YS,−

D+
×
S1

D−
×
S1

r
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Goal: to solve the HYM problem F̂H = 0 on suitable bundles over these

ACylCYs, ergo G2−instantons on the pull-back over W × S1.

Strategy: consider first the ‘nonlinear heat flow’

(†)

{
H−1∂H

∂t
= −2iF̂H

H (0) = H0

on WS × [0, T [

over a truncation, with (Dirichlet) boundary condition

H |∂WS
= H0 |∂WS

where H0 is a fixed reference (Hermitian) metric on E →W with ‘good’

asymptotic behaviour. Then

H = lim
t<T→∞

(

lim
S→∞

HS(t)

)

.



Asymptotically stable bundles

Gauge theory in higher
dimensions

Twisted connected sums

The Hermitian Yang-Mils
problem

Outline

Asymptotically stable
bundles

Smooth solutions on
W for all time

Enough of PDE!

Instanton gluing
theorem

Construction of
asymptotically stable
bundles

A polycyclic Hoppe
theory

15 / 38

Definition. A bundle E →W is stable at infinity (or asymptotically stable)

if it is the restriction of a hol.v.b. E → X satisfying:

� E is indecomposable;

� E|D is stable, hence also E|Dz for |z| < δ.

Definition. A reference metric H0 on an asymptotically stable bundle

E →W is (the restriction of) a smooth Hermitian metric on E → X such

that:

� H0|Dz are the HYM metrics on E|Dz , 0 ≤ |z| < δ;

� H0 has finite energy: ‖F̂H0‖L2(W,ω) <∞.
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Following S. Donaldson, C. Simpson et al.:

� Each HS (t) exists and is unique and smooth, ∀t ∈ ]0,∞[ .
� HS (t) are bounded in Lp2 (WS) uniformly in t, ∀1 ≤ p <∞.

� Consequently, HS (T ) is of class C1 [Sobolev embedding] and

‖FHS‖Lp(WS) <∞, ∀1 ≤ p <∞.

� (. . . ) gruesome analysis (...)

� FHS is actually bounded in L∞k (WS) [bounds on Heat Kernel].

� H(T ) is smooth [elliptic regularity].

Proposition. Given any T > 0, ∃!{H (t)} on E →W , solution of the

evolution equations

{
H−1∂H

∂t
= −2iF̂H

H (0) = H0

on W × [0, T ]

with ‘good’ asymptotic behaviour.
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Theorem 1 (S., 2011). Let E →W be asymptotically stable, equipped

with a reference metric H0, over an ACylCY 3–fold W as given by the

C-Y-T-K-CHNP theorem, and let {Ht}t∈]0,∞[ be the 1−parameter family

of Hermitian metrics on E solving the evolution equation (†) over W ;

then the limit H = lim
t→∞

Ht exists and is a smooth HYM metric on E ,

exponentially asymptotic in all derivatives to H0 along the tubular end:

F̂H = 0, H
C∞
−→
S→∞

H0.

. . .
so we have a G2−instanton on p∗1E →W × S1!!!
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Theorem 2 (S.-Walpuski, 2013). (X±, D±,m) matching pair of building

blocks, (Y, ϕS) := X+#̃SX− the compact 7–manifold and E± → X±
holomorphic bundles s.t.

� Stability: E±|D± is stable with corresponding ASD instanton A∞,±.

� Compatibility: isomorphism r̄ : E+|D+ → E−|D− covering r s.t.

r̄∗A∞,− = A∞,+.

� Rigidity: no infinitesimal deformations of E± fixing restriction to D±:

H1(X±, End0(E±)(−D±)) = 0.

� Transversality: im(λ+) ∩ im(r̄∗ ◦ λ−) = {0} ⊂ H1
A∞,+

for

λ± : H1(X±, End0(E±))→ H1
A∞,± := ker

(
d∗A∞,± ⊕ d+

A∞,±

)∣∣
∣
D±

Then there exists a non-trivial PU(n)–bundle E over Y , a constant

S1 ≥ S0 and for each S ≥ S1 an irreducible (...) G2–instanton AS on E
over (Y, ϕS).
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Recall the slope of a coherent sheaf is

µ(F) :=
deg(F)
rk (F)

.

A holomorphic vector bundle E → X (think X = X) is said to be stable

if, for every coherent subsheaf F ↪→ E ,

µ (F) < µ(E).

A smooth projective variety X is cyclic if Pic (X) = Z; then

deg(E) := c1(E) · OX(1)⊗(dimX−1)

The normalisation of E → X is Enorm := E(−kE), with

kE := dµ(E)e ∈ Z. Clearly

−r + 1 ≤ c1(E(−kE)) = c1(E)− r.kE ≤ 0.
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Criterion (Hoppe). Let E → Pn be a holomorphic vector bundle of rank

r = 2 and c1(E) = 0; then

E is stable ⇔ h0 (E) = 0.

Proof.

(⇒) A section s ∈ H0(E) would give a monomorphismOPn ↪→ E ,

violating stability: µ(OPn) = 0 ≥ 0 = µ(E).

(⇐) A destabilising sheaf F ↪→ E must be a line bundle.

Since Pic (Pn) = Z, we have F = OPn(a) whose inclusion is a section

of E(−a). By assumption, we must have a < 0, but then

a = µ(F) ≥ µ(E) = 0 > a (!)

¿What about arbitrary degree?
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Criterion (Hoppe II). Let E → X be a holomorphic vector bundle of rank

r = 2 over a cyclic variety; then

E is stable ⇔ h0 (Enorm ) = 0.

Proof.

(⇒) A section s ∈ H0(Enorm ) would giveOX(kE) ↪→ E , violating

stability: µ(OX(kE)) = kE ≥
c1(E)

2 = µ(E).

(⇐) A destabilising sheaf F ↪→ E must be a line bundle.

Since Pic (X) = Z, F = OX(a) which gives a section of

E(−a) = Enorm (kE − a). By hypothesis, we must have a < kE , but then

a = µ(F) ≥ µ(E) > kE − 1 ≥ a (!)

¿What about arbitrary rank r ≥ 2?
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Criterion (Hoppe III). Let E → X be a holomorphic vector bundle of rank

r over a cyclic variety; if

H0((∧sE)norm) = 0 for 1 ≤ s ≤ r − 1,

then E is stable. Conversely, if E is stable then H0(Enorm ) = 0.

Proof.

(⇒) A section of Enorm would giveO(kE) ↪→ E , violating stability:

µ(O(kE)) = kE ≥
c1(E)
r = µ(E).

(⇐) A destabilising F ↪→ E of rank s gives ∧sF ↪→ ∧sG, hence a

section of (∧sE)(−a) with detF = OX(a).

By hypothesis, we must have a < ks := k∧sE , but then

a = degF ≥ s.µ(E) = µ(∧sE) > ks − 1 ≥ a (!)
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Proposition 3 (Jardim-S.). Let E → X3 be the vector bundle, over a

nonsingular cyclic Fano variety, arising from an instanton monad of the

form

0 // O (−1)⊕c
α // O⊕2+2c

β // O (1)⊕c // 0 (1)

Then E :=
ker β
imgα

is stable. If moreover D ⊂ X is a cyclic divisor, then

E|D is stable.

Recall: Therefore E is a G2–instanton bundle, by Theorem 1.
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X = P3, D ∈ |−KP3 | = |O (4)| , r = 2, c = 1

0

��
O (−5)

��
0 // K(−4)

��

// O(−4)⊕4 // O(−3)

��

// 0

0 // E(−4)

��

// E // E|D // 0

0

¿How about larger Picard group, e.g. P2 × P1?
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A projective variety X will be called polycyclic if Pic (X) ' Zl+1 for some

l ≥ 0. (e.g., all weak Fano 3-folds).

Fix Pic (X) = 〈Υ0,Υ1, . . . ,Υl〉; given ~p ∈ Zl+1 one denotes

O(~p) = OX(p0, . . . , pl) := Υ⊗p0
0 ⊗ · · · ⊗ Υ⊗pll .

Accordingly, given E → X , its polytwist is denoted by

E(~p) = E(p0, . . . , pl) := E ⊗ O(p0, . . . , pl).

Set [hi] := c1(Υi) ∈ H2(X,Z). For a torsion-free coherent sheaf F of

rank s and [c1(F)] = p0[h0] + · · ·+ pl[hl]:

detF = (∧sF)∨∨ = O(p0, . . . , pl),
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Fix polarisation L→ X ; the L−degree of F is

degLF := c1(F) · LdimX−1

and it induces a linear functional δL on the lattice Zl+1:

δL(p0, . . . , pl) := degLO(p0, . . . , pl).

Denoting by {−→ei }i=0,··· ,l the canonical basis of Zl+1:

degLF(m−→ei ) = degLF +m (rankF) δL(−→ei ).
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Example 1 (Cartesian product). X = Pn × Pm, L := O(1, 1):

degLF =
n(n+ 1) · · · (n+m− 1)

m!

(
p1 +

m

n
p2

)
.

Example 2 (Hirzebruch surfaces). X = Σa := P (OP1(a)⊕OP1),

Pic (X) = Z.Sa ⊕ Z.H , L := O(1, a+ 1); if detF = O(p1, p2), then

degLF = (a+ 1)p1 + p2 − ap1 = p1 + p2.

Example 3 (Blow-up of P2 at l points). X = P̃2(l),

Pic (X) = Z.E1 ⊕ · · · ⊕ Z.El ⊕ Z.H , L := O(−1, . . . ,−1, l + 1); if

detF = O(p1, . . . , pl+1) then

degLF = p1 + · · ·+ pl + (l + 1)pl+1.
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For i = 0, . . . , l:
The ith degree of F and the ith slope of F are

deg−→ei F := c1(Υi) · L
n−1 and µ−→ei (F) :=

deg−→ei F

rankF

so that degLF =
∑l

i=0 deg−→ei F and µL(F) =
l∑

i=0

µ−→ei (F).

The L−normalisation of F is

FL−norm := F(−~kF )

where ~kF ∈ Zl+1 has components kiF :=

⌈
µ−→ei

(F)

δL(−→ei )

⌉

. Indeed:

1− r.δL(−→ei ) ≤ deg−→ei FL−norm ≤ 0.
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The L−slope of a sheaf is essentially bounded below by its

L−normalisation:

Lemma 1. Let ~kF be the L−normalisation vector of F , and set

δL(L) := degL(L); then

µL(F) > δL(~kF )− δL(L) + tF

where tF :=

⌈

µL(F)− δL(~k) + δL(L)− 1

⌉

≥ 0.
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Theorem 4 (Polycyclic Hoppe Criterion). Let E → X be a holomorphic

vector bundle of rank r ≥ 2 over a polycyclic variety with Pic (X) ' Zl+1

and polarisation L; define the constant ts := t∧sE as by Lemma 1. If

H0(X, (∧sE)L−norm(~p)) = 0 (∗)

for all ~p ∈ Zl+1 such that

δL(~p) < δL(L)− ts (i)

then E is stable.

Conversely, if E is stable then

H0(X, E(~p)) = 0, ∀~p such that δL(~p) ≤ −µL(E).
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Proof. Suppose F ↪→ E is a destabilising sheaf of rank s, such that

detF = OX(~a). The inclusion induces a map ∧sF ↪→ ∧sE and so

H0(X, (∧sE)(−~a)) 6= 0, i.e.,

H0(X, (∧sE)L−norm(~ks − ~a)) 6= 0.

If, for ~p := ~ks −~a, there could occur δL(~p) ≥ δL(L)− ts, then Lemma 1

would imply a contradiction:

δL(~a) = degF ≥ s µL(E) = µL(∧sE)

> δL(~ks)− δL(L) + ts

≥ δL(~a)

using µL(E) ≤ µL(F) = degF
s ; thus ~p satisfies (i).

Converse: trivial.
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Proposition 5 (Jardim-S.). Let E → Pn×Pm, n ≥ m > 1 be a L-stable

vector bundle obtained as the cohomology of a monad of the form

0→ (−1, 0)⊕a
α
−→

⊕b
⊕(−1, 1)⊕c

β
−→ (0, 1)⊕a → 0 (2)

such that c ≤ a and b+ c− 2a = 2. If D ⊂ X is a polycyclic divisor of

positive polydegree, then E|D isOD(1, 1)-stable.

¿ How about P2 × P1!?



The restriction property

Gauge theory in higher
dimensions

Twisted connected sums

The Hermitian Yang-Mils
problem

Construction of
asymptotically stable
bundles

A polycyclic Hoppe
theory

Polytwists

L-degree

Examples

L-normalisation

L-slope and
L-normalisation

Polycyclic Hoppe
criterion, I

Proof

Example

The restriction property

Polycyclic Hoppe
criterion, II

Examples: extensions
over P2 × P1

The end 35 / 38

¿What if the vanishing hypothesis is too strong
e.g.: monad cohomologies over P2 × P1!?

A polycyclic variety X will be called a polycyclic family over a cyclic variety

Z if it admits a projective morphism X
π
→ Z s.t. π∗Pic (Z) ↪→ Pic (X) is

an injection.

So Pic (X) = 〈Υ0,Υ1, . . . ,Υl〉 ' Zl+1 with Υ0 ∈ |π∗(OZ(1))|.
Given a bundle Q→ X , fix z ∈ Z s.t. Yz := π−1(z) has

Pic (Yz) = 〈Υ1, . . . ,Υl〉.

0 // Q(−d0)
σz // Q

ρz // Q|Yz // 0

We will say that Q has the restriction property at z if sections restrict

nontrivially to Yz , i.e.,

0 6= σ ∈ H0(X,Q) ⇒ 0 6= ρz(σ) ∈ H0(Yz, Q|Yz). (3)
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Definition 6. Let Q→ Y be a holomorphic bundle over a polycyclic

variety with Pic (Y ) ' Zl; then ~v ∈ Zl is a bounding vector for Q if, given

~m ∈ Zl,

mi ≤ −vi for some 1 ≤ i ≤ l ⇒ H0(Y,Q(~m)) = 0.

Corollary 7. If, moreover, X is a polycyclic family over Z admitting a

point z ∈ Z such that, for each 1 ≤ s ≤ r − 1, the bundle ∧sG admits a

bounding vector−→vs = −→vs(z) and has the restriction property (3) at z, then

it suffices to check (∗) for all ~p satisfying both (i) and:

pi < kis + vis, i = 1, · · · , l (ii)

where ~ks := ~k∧sG is the L−normalisation vector.
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Given integers p ≥ s and t ≥ q + 2, we obtain a bundle E → P2 × P1

as a non-trivial extension of the form:

0 // O(p, q) // E // O(s, t) // 0 .

A judicious choice of p, q, s, t guarantees that E is asymptotically stable

[Jardim-Prata-S.], e.g.:

0 // O(−1,−1) // E // O(−1, 1) // 0

0 // O(−1, 0) // E // O(−1, 2) // 0

0 // O(−1, 1) // E // O(−1, 3) // 0

... and many more!

NB.: Required a polycyclic stability theory.
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¿How about rigid asymptotically stable examples?

¿Can we extend the theory to ‘asymptotically stable’ reflexive
sheaves?

Thank you!

H.N.S., G2–instantons over asymptotically cylindrical manifolds, to appear

in Geometry & Topology (2011).

H.N.S. & Thomas Walpuski, G2–instantons over twisted connected sums,

to appear in Geometry & Topology (2013).

Marcos Jardim, Daniela Prata & H.N.S., Holomorphic bundles for higher

dimensional gauge theory, submitted (2014).
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