Supersymmetric localization and the gauge/gravity duality

Dario Martelli

King's College London

Based on work with B. Assel and D. Cassani

Riemann Workshop

Gauge Theories in Higher Dimensions

Leibniz Universität Hannover – 11 - 14 August 2014

(日) (周) (三) (三)

Outline

- Part I: supersymmetric localization
- Output: Part II: gauge/gravity duality

I will focus on four-dimensional field theories and five-dimensional gravity duals

Image: A math and A math and

Gauge/Gravity duality

Equivalence between (quantum) gravity in bulk space-times and quantum field theories on their boundaries

Localization

- For certain supersymmetric field theories defined on compact curved Riemannian manifolds the path integral may be computed exactly
- Localization: functional integral over all fields of a theory → integral/sum over a reduced set of field configurations
- Saddle point around a supersymmetric locus gives the exact answer
- A priori the path integral ("partition function" **Z**) depends on the parameters of the theory and of the background geometry

(日) (同) (三) (三)

Supersymmetry

- When bulk and boundary are supersymmetric we can perform detailed computations on both sides and (in certain limits) compare them
- Supersymmetry in the bulk \Rightarrow supersymmetric solutions of supergravity equations

● Supersymmetry on the boundary ⇒ **"rigid" curved space supersymmetry**

Part I: Supersymmetric localization

・ロト ・日本・ ・ 日本

э

Prequel: localization on the round three-sphere

- Supersymmetric localization attributed to [Pestun]: $\mathcal{N} = 2$ four-dimensional QFT on round $S^4 \rightarrow$ followed by results in three dimensions [J. Sparks' talk]
- Any d = 3, $\mathcal{N} = 2$ gauge theory on the round S^3 , preserves supersymmetry [Kapustin-Willet-Yaakov], [Jafferis], [Hama-Hosomichi-Lee]. Key ingredient: on the (unit-radius) round S^3 there exist Killing spinors χ

$$\nabla_{i}\chi = \frac{i}{2}\gamma_{i}\chi$$

 Full path integral → matrix integral with integrand a super-determinant where "most", but not all eigenvalues cancel out:

det D _{ferm} _	\prod ferm eigenvalues	☐ unpaired ferm eigenvalues
det D_{bos} –	∏ bos eigenvalues	☐ Inpaired bos eigenvalues

イロト イポト イヨト イヨト

Four dimensional $\mathcal{N} = 1$ supersymmetric field theories

- Main character: **d** = **4** supersymmetric gauge theories with "matter"
- Supersymmetry organises the fields in multiplets, containing fields with different spin
- Vector multiplet: gauge field \mathcal{A} (connection on a bundle); Weyl spinor λ ; "auxiliary" scalar **D** (sort of Lagrange multiplier), all transforming in the adjoint representation of a group **G**
- Chiral multiplet (the "matter"): complex scalar φ; Weyl spinor ψ;
 "auxiliary" scalar F, all transforming in a representation *R* of the group G
- In flat space with Lorentzian signature, supersymmetric Lagrangians containing these fields are text-book material (Euclidean space has some extra caveats)

・ロン ・四 ・ ・ ヨン ・ ヨン

Four dimensional $\mathcal{N} = 1$ supersymmetric field theories

• For example, defining $D_{\mu} = \partial_{\mu} - iA_{\mu}$, where \cdot denotes action on the appropriate representation, we have

$$\mathcal{L} = (\mathsf{D}^{\mu}\phi)^{\dagger}\mathsf{D}_{\mu}\phi + \mathsf{i}\psi^{\dagger}\sigma^{\mu}\mathsf{D}_{\mu}\psi + \dots$$

- Somewhat strangely, rigid supersymmetry in curved space (Euclidean or Lorentzian) addressed systematically only in the 2010's
- But local supersymmetry studied since long time ago \rightarrow supergravity
- [Festuccia-Seiberg]: take supergravity with some gauge and matter fields and appropriately throw away gravity → "rigid limit". Simple but correct
- Important: in the process of throwing away gravity, some extra fields of the supergravity multiplet remain, but are non-dynamical → background fields

イロト 不得 トイヨト イヨト 二日

Rigid supersymmetric four-manifolds

• Rigid limit of "new minimal" supergravity \rightarrow Killing spinor equation for d = 4, $\mathcal{N} = 1$ gauge theories on curved space

$$(
abla_{\mu} - iA_{\mu})\zeta + iV_{\mu}\zeta + iV^{
u}\sigma_{\mu
u}\zeta = 0$$

- The ${\sf A}_\mu, {\sf V}_\mu$ are background fields and ζ is a supersymmetry parameter
- In Euclidean signature: equivalent to Hermitian metric [Klare-Tomasiello-Zaffaroni], [Dumitrescu-Festuccia-Seiberg]
- In Lorentzian signature: equivalent to null conformal Killing vector [Cassani-Klare-DM-Tomasiello-Zaffaroni]
- Main motivation: localization in four dimensional $\mathcal{N}=1$ gauge theories \rightarrow [Assel-Cassani-DM]

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Localization on four-manifolds: strategy outline

- Work in Euclidean signature and start with generic background fields A_μ,
 V_μ associated to a Hermitian manifold
- \bullet Construct "susy-exact" Lagrangians for the vector and chiral multiplets \rightarrow set-up localization on a general Hermitian manifold
- Restrict to backgrounds admitting a second spinor $\tilde{\zeta}$ with opposite R-charge \to show that is possible to pick a real ${\bf A}$
- $\bullet\,$ Further restrict to manifolds with topology $M_4\simeq S^1\times S^3$
- Prove that the localization locus is given by gauge field A_{τ} = constant, with all other fields (λ , D; ϕ , ψ , F) vanishing
- Partition function reduces to a matrix integral over the Kaluza-Klein (Fourier) modes of A_τ on S¹ → integrand is infinite product of 3d super-determinants → use the 3d results! [J. Sparks' talk]

イロト 不得下 イヨト イヨト 二日

Localizing Lagrangians and saddle point equations

• The bosonic parts of the localizing terms constructed with ζ are

$$\mathcal{L}_{\text{vector}}^{(+)} = \operatorname{tr}\left(\frac{1}{4}\mathcal{F}_{\mu\nu}^{(+)}\mathcal{F}^{(+)\,\mu\nu} - \frac{1}{4}\mathsf{D}^{2}\right)$$
$$\mathcal{L}_{\text{chiral}} = \left(\mathsf{g}^{\mu\nu} - \mathsf{i}\mathsf{J}^{\mu\nu}\right)\mathsf{D}_{\mu}\widetilde{\phi}\mathsf{D}_{\nu}\phi + \widetilde{\mathsf{F}}\mathsf{F}$$

Where $\mathsf{D}_{\mu} = \nabla_{\mu} - \mathsf{i}\mathsf{q}_{\mathsf{R}}\mathsf{A}_{\mu} - \mathsf{i}\mathcal{A}_{\mu}$.

- In Euclidean signatures all fields are doubled, and to evaluate the path integral one needs to impose reality conditions
- With the obvious ones, \mathcal{A}, \mathbf{D} Hermitian, $\tilde{\phi} = \phi^{\dagger}$, $\tilde{\mathbf{F}} = \mathbf{F}^{\dagger}$, we obtain the saddle point equations
 - $\begin{array}{ll} \text{vector}: & \mathcal{F}^{(+)}_{\mu\nu} = 0 \,, & \mathsf{D} = 0 \\ \text{chiral}: & \mathsf{J}^{\mu}{}_{\nu}\mathsf{D}^{\nu}\widetilde{\phi} = \mathsf{i}\mathsf{D}^{\mu}\widetilde{\phi} \,, & \mathsf{F} = 0 \\ \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Aside: localization on general Hermitian manifolds

• The saddle-point condition of the vector multiplet is the instanton equation on **M**₄. I don't have to explain this equation at this workshop!

$$\mathsf{Z} = \sum_{\text{charge n inst.}} \int_{\text{inst. moduli space}} \text{[inst. measure]} \; \mathsf{Z}_{\text{classic}} \; \mathsf{Z}_{1-\text{loop}}$$

- Instantons on Hermitian manifolds (HYM) \rightarrow hard problem (?)
- The saddle-point condition of the chiral multiplet can be rewritten as $\bar{\partial}_{\rm D}\phi = \mathbf{0} \rightarrow$ holomorphic sections of instanton bundle (+ further twist)
- Curiously, it is possible to deform the instanton equation to obtain the "vortex" equations [Bradlow], [Garciá-Prada]

$$\mathsf{J}_{\mu\nu}\mathcal{F}^{\mu\nu} = \phi^{\dagger}\phi + \tau , \qquad \Omega_{\mu\nu}\mathcal{F}^{\mu\nu} = \mathbf{0} \\ \bar{\partial}_{\mathsf{D}}\phi = \mathbf{0}$$

• Exploited in physics to perform an alternative localization in some cases ("Higgs branch" localization), [Benini-Cremonesi,...]

Geometries with two supercharges of opposite R-charge

• Assume that there exist a second spinor $\widetilde{\zeta}$, with opposite chirality, obeying the rigid new minimal equation

$$(
abla_{\mu}+iA_{\mu})\,\widetilde{\zeta}-iV_{\mu}\widetilde{\zeta}-iV^{
u}\widetilde{\sigma}_{\mu
u}\widetilde{\zeta}=0$$

- Geometry is a special case of ambihermitian manifold, which may be neatly characterised by the complex holomorphic Killing vector field $\mathbf{K}^{\mu} = \zeta \sigma^{\mu} \widetilde{\zeta}$
- The metric takes a canonical form in terms of complex coordinates z, w

$$ds^{2} = \Omega^{2}[(dw + hdz)(d\bar{w} + \bar{h}d\bar{z}) + c^{2}dzd\bar{z}]$$

with $\Omega(z, \overline{z})$, $c(z, \overline{z})$, $h(z, \overline{z})$ arbitrary functions

Choice of real A

• The background fields take the form

$$\begin{split} \mathsf{V} &= \mathrm{d}^{\mathsf{c}} \log \varOmega + \frac{2}{\varOmega^2 \mathsf{c}^2} \operatorname{Im} \left(\partial_{\overline{\mathsf{z}}} \mathsf{h} \, \mathsf{K} \right) + \kappa \mathsf{K} \\ \mathsf{A} &= \frac{1}{2} \mathrm{d}^{\mathsf{c}} \log \left(\varOmega^3 \mathsf{c} \right) + \frac{1}{2} \mathrm{d} \omega + \left(\frac{3}{2} \kappa - \frac{\mathsf{i}}{\varOmega^2 \mathsf{c}^2} \partial_{\overline{\mathsf{z}}} \mathsf{h} \right) \mathsf{K} \end{split}$$

- ω is a phase entering in the Killing spinors, that can be fixed requiring **A** to be globally well-defined
- κ is an arbitrary function a priori, that drops out from the rigid supersymmetry equations → refer to as "κ-gauge"
- We fix κ so that the last term in **A** vanishes and therefore **A** is real

イロト イヨト イヨト イヨト

"Toric" Hopf surfaces

- A Hopf surface is essentially a four-dimensional complex manifold with the topology of $S^1 \times S^3$, and it may be defined as a compact complex surface whose universal covering is $\mathbb{C}^2 (0, 0)$
- Described as quotient of $\mathbb{C}^2 (0,0)$, with coordinates $\mathsf{z}_1,\mathsf{z}_2$ identified as

$$(\mathsf{z}_1,\mathsf{z}_2)\sim(\mathsf{p}\mathsf{z}_1,\mathsf{q}\mathsf{z}_2)$$

where **p**, **q** are in general two complex parameters

• We show that on a Hopf surface we can take a very general metric

$$\mathrm{d}s^2 = \Omega^2 \mathrm{d}\tau^2 + \mathsf{f}^2 \mathrm{d}\rho^2 + \mathsf{m}_{\mathsf{I}\mathsf{J}} \mathrm{d}\varphi_{\mathsf{I}} \mathrm{d}\varphi_{\mathsf{J}} \qquad \mathsf{I}, \mathsf{J} = 1, 2$$

while preserving two spinors $\pmb{\zeta}$ and $\widetilde{\pmb{\zeta}}$

• τ is a coordinate on S¹, while the 3d part has coordinates $\rho, \varphi_1, \varphi_2$, describing S³ as a T² fibration over an interval \rightarrow "toric"

The matrix model

- The localizing locus simplifies drastically, due to "doubling the equations imposed", e.g. $\rightarrow \mathcal{F}^+ = \mathcal{F}^- = \mathbf{0} \rightarrow$ full contribution comes from zero-instanton sector! Flat connections $\mathcal{A}_{\tau} =$ constant, and all other fields vanishing
- The localized path integral is reduced to exactly the same 3d computation done in [Alday-DM-Richmond-Sparks] (with no CS terms). More precisely, to an infinite product of that, one for each KK supermultiplet mode
- The Hopf surface complex structure data **p**, **q** maps to the almost contact structure data **b**₁, **b**₂ as: $\mathbf{p} = \mathbf{e}^{-2\pi|\mathbf{b}_1|}$, $\mathbf{q} = \mathbf{e}^{-2\pi|\mathbf{b}_2|}$
- Infinite products regularised using fancy mathematical formulas. E.g.

$$\mathsf{Z}_{\text{1-loop}}^{\text{chiral}} = \prod_{\rho \in \Delta_{\mathcal{R}}} \prod_{\mathsf{n} \in \mathbb{Z}} \mathsf{Z}_{\text{1-loop}\,(3\mathrm{d})}^{\text{chiral}} \big[\sigma_{\mathsf{0}}^{(\mathsf{n},\rho)} \big]$$

$$ightarrow \, \mathrm{e}^{\mathrm{i}\pi \varPsi_{\mathrm{chi}}^{(0)}} \, \mathrm{e}^{\mathrm{i}\pi \varPsi_{\mathrm{chi}}^{(1)}} \, \prod_{
ho \in arDelta_{\mathcal{R}}} \, arGamma_{\mathrm{e}} \left(\mathrm{e}^{2\pi \mathrm{i}
ho_{\mathcal{A}_{0}}} \left(\mathsf{pq}
ight)^{rac{\mathrm{r}}{2}}, \mathsf{p}, \mathsf{q}
ight)$$

イロト 不得下 イヨト イヨト 二日

Supersymmetric index

- The prefactor Ψ⁽¹⁾_{chi} is anomalous and must cancel after combining with the vector multiplet contribution → anomaly cancellation conditions "for free"
- The rest combines into the following formula

$$Z[\mathcal{H}_{p,q}] = e^{-\mathcal{F}(p,q)} \mathcal{I}(p,q)$$

where $\mathcal{I}(\mathbf{p}, \mathbf{q})$ is the supersymmetric index with \mathbf{p}, \mathbf{q} fugacities

$$\mathcal{I}(\mathbf{p},\mathbf{q}) = \frac{(\mathbf{p};\mathbf{p})^{\mathbf{r}\mathbf{G}}(\mathbf{q};\mathbf{q})^{\mathbf{r}\mathbf{G}}}{|\mathcal{W}|} \int_{\mathsf{T}^{\mathbf{r}\mathbf{G}}} \int_{\mathbf{\alpha}\in\Delta_{+}} \frac{\mathrm{d}\mathbf{z}}{2\pi i \mathbf{z}} \prod_{\boldsymbol{\alpha}\in\Delta_{+}} \theta\left(\mathbf{z}^{\boldsymbol{\alpha}},\mathbf{p}\right) \theta\left(\mathbf{z}^{-\boldsymbol{\alpha}},\mathbf{q}\right) \prod_{\mathbf{J}} \prod_{\boldsymbol{\rho}\in\Delta_{\mathbf{J}}} \Gamma_{\mathbf{e}}\left(\mathbf{z}^{\boldsymbol{\rho}}(\mathbf{p}\mathbf{q})^{\frac{\mathbf{r}_{\mathbf{J}}}{2}},\mathbf{p},\mathbf{q}\right)$$

which may be defined as a sum over states as

$$\mathcal{I}(\mathbf{p},\mathbf{q}) = \operatorname{Tr}[(-1)^{\mathsf{F}}\mathbf{p}^{\mathsf{J}+\mathsf{J}'-\frac{\mathsf{R}}{2}}\mathbf{q}^{\mathsf{J}-\mathsf{J}'-\frac{\mathsf{R}}{2}}]$$

 The fact that the index is computed by the localized path integral on a Hopf surface was anticipated by [Closset-Dumitrescu-Festuccia-Komargodski]

(日) (同) (三) (三)

Supersymmetric Casimir energy

• The path integral + regularisation produced an extra pre-factor $\mathcal{F}(\mathbf{p}, \mathbf{q})$ explicitly given by

$$\begin{aligned} \mathcal{F}(\mathbf{p},\mathbf{q}) &= \frac{4\pi}{3} \left(|\mathbf{b}_1| + |\mathbf{b}_2| - \frac{|\mathbf{b}_1| + |\mathbf{b}_2|}{|\mathbf{b}_1| |\mathbf{b}_2|} \right) (\mathbf{a} - \mathbf{c}) \\ &+ \frac{4\pi}{27} \frac{(|\mathbf{b}_1| + |\mathbf{b}_2|)^3}{|\mathbf{b}_1| |\mathbf{b}_2|} (\mathbf{3} \, \mathbf{c} - \mathbf{2} \, \mathbf{a}) \end{aligned}$$

where

$$a = \frac{3}{32} (3 \operatorname{tr} R^3 - \operatorname{tr} R)$$
, $c = \frac{1}{32} (9 \operatorname{tr} R^3 - 5 \operatorname{tr} R)$

 Invariant depending only on complex structure and the trace anomaly coefficients a, c → should not be merely a "counterterm", expect to encode physical/mathematical properties

イロト 不得下 イヨト イヨト 二日

12 August 2014

19 / 37

• We argued that it is essentially the "vacuum energy" \to refer to as supersymmetric Casimir energy ${\sf E}_{\rm susy}$

Dario Martelli (KCL)

More comments on the supersymmetric Casimir energy

- How does one know the result does not depend on the regularisation procedure, e.g. zeta-function?
- One must show that there are no finite, supersymmetric, "counterterms" integrals of local densities
- Conjecture: there are no finite local counterterms (some exist, but vanish) [Assel-Cassani-DM] (unpublished)
- Supersymmetric Casimir energy can be recovered from the Hamiltonian formalism [Lorenzen-DM] (to appear)

$$\langle 0|H_{BPS}|0
angle = E_{
m susy}$$

where H_{BPS} is an appropriate supersymmetric Hamiltonian, such that $[H_{BPS},Q_{\rm susy}]=0$

イロト イポト イヨト イヨト

Part II: Gauge/gravity duality

3

イロン イヨン イヨン イ

3

Constructing gravity duals

Idea: find a supersymmetric filling M_5 of a given M_4 in the context of d = 5, gauged supergravity, and use the fact that any such solution uplifts to a supersymmetric solution $M_5 \times Y_5$ of Type IIB supergravity

Action*:
$$\mathbf{S} = \frac{1}{16\pi G} \int \left[d^5 \mathbf{x} \sqrt{\mathbf{g}} \left(\mathbf{R} - \mathbf{F}^2 + \frac{12}{\ell^2} \right) - \frac{8}{3\sqrt{3}} \mathbf{A} \wedge \mathbf{F} \wedge \mathbf{F} \right]$$

KSE: $\left[\nabla_{\mu} + \frac{i}{4\sqrt{3}} \left(\gamma_{\mu}{}^{\nu\lambda} - 4\delta^{\nu}_{\mu}\gamma^{\lambda} \right) \mathbf{F}_{\nu\lambda} - \frac{1}{2\ell} (\gamma_{\mu} - 2\sqrt{3} i\mathbf{A}_{\mu}) \right] \epsilon = 0$

Dirichlet problem: find $(M_5, g_{\mu\nu}, A)$ such that

- The conformal boundary of M₅ is M₄
- The gauge field A restricts to $A^{cs} = A^{(4)} \frac{3}{2}V^{(4)}$
- The Killing spinor ϵ restricts to the Killing spinor χ

Check: The on-shell sugra action should reproduce the Casimir energy!

*From now on, A will denote the five-dimensional gravi-photon field, while the four-dimensional background fields $A^{(4)}$, $v^{(4)}$ will not appear in the formulas

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

3d/4d gravity duals

- This can be repeated with "4d" replaced by "3d" and "5d" replaced by "4d" almost step by step: in fact, this is where we started from [J. Sparks' talk]
- Solutions constructed by: [DM,Passias,Sparks,Farquet,Lorenzen] and some variations by [Huang-Rey-Zhou;Nishioka]
- In d = 3 field theories on $M_3 \simeq S^3$, the large N limit of the localized partition function matches exactly the d = 4 supergravity action, evaluated on a solution \rightarrow perfect cross-check of gauge/gravity and localization!
- This "sets the standard" for similar constructions in different dimensions

・ロン ・四 ・ ・ ヨン ・ ヨン

5d gravity duals

• Is there any known example of a 5d gravity solution whose conformal boundary is a Hermitian manifold?

3

(日) (周) (三) (三)

5d gravity duals

• Is there any known example of a 5d gravity solution whose conformal boundary is a Hermitian manifold? Yes: Euclidean global AdS₅, with conformal boundary the round ${\bf S^1}\times {\bf S^3}$

- 4 同 6 4 日 6 4 日 6

5d gravity duals

- Is there any known example of a 5d gravity solution whose conformal boundary is a Hermitian manifold? Yes: Euclidean global AdS₅, with conformal boundary the round $S^1 \times S^3$
- Gravity dual of a generic Hermitian manifold is a very hard problem, e.g. no isometries. Moreover, no localization results (yet) so there is nothing to compare with
- Start investigating solutions whose conformal boundary M_4 is a more general Hopf surface, thus $M_4\simeq S^1\times S^3$
- Useful technical simplification: SU(2) × U(1) × U(1) symmetry \rightarrow ODE's \rightarrow singles out S¹ × S³_{squashed}
- We looked for a supersymmetric "filling" M₅ of this boundary, in minimal gauged supergravity in d = 5 [Cassani-DM]

Gutowski-Reall equation

Existence of one solution ϵ yields a canonical form of the metric and the gauge field [Gauntlett-Gutowski]. In the "time-like" class the metric reads

$$\mathrm{d}s^2 = -f^2(\mathrm{d}y + \omega)^2 + f^{-1}\mathrm{d}s_B^2$$

where $\mathrm{d} s^2_B$ is a Kähler metric and $\frac{\partial}{\partial y}$ is a time-like (in the bulk) Killing vector Further imposing an ansatz with $SU(2)\times U(1)\times U(1)_y$ symmetry, with metric

$$ds_{B}^{2} = d\rho^{2} + a^{2}(\hat{\sigma}_{1}^{2} + \hat{\sigma}_{2}^{2}) + (2aa')^{2}\hat{\sigma}_{3}^{2}$$

relates all functions in the ansatz, e.g.

$$f^{-1} = \frac{\ell^2}{12a^2a'} [4(a')^3 + 7a a'a'' - a' + a^2a''']$$

reducing the susy conditions to one ODE for one function $a(\rho)$. This is the ODE derived by [Gutowski-Reall], who also found a one-parameter family of black-hole solutions, i.e. with event horizon

We found a new one-parameter solution s.t. $[CM] \cap [GR] = AdS_5$,

Dario Martelli (KCL)

The solution

Solve the ODE order by order by plugging a "UV" expansion $(
ho
ightarrow \infty)$

$$\mathbf{a} = \mathbf{a}_0 \mathbf{e}^{\rho} \left[1 + (\mathbf{a}_2 + \mathbf{c}\rho) \, \frac{\mathbf{e}^{-2\rho}}{\mathbf{a}_0^2} + (\mathbf{a}_4 + \mathbf{a}_{4,1}\rho + \mathbf{a}_{4,2}\rho^2) \, \frac{\mathbf{e}^{-4\rho}}{\mathbf{a}_0^4} + \dots \right]$$

and an "IR" expansion $(
ho
ightarrow \mathbf{0})$

$$a = a_0^{IR} + a_1^{IR}\rho + a_2^{IR}\rho^2 + a_3^{IR}\rho^3 + \dots$$

Require that in the UV the solution is AlAdS₅ and in the IR it is smooth with no horizon. Globally $\mathbb{R}^{1,4}=\mathbb{R}\times\mathbb{R}^4$

UV: five free parameters a_0, c, a_2, a_4, a_6 . IR: one free parameter ξ . A solution interpolating between IR and UV is shown to exist

- **(**) analytically as a linearised (in ξ) perturbation of AdS₅
- 2 numerically for arbitrary values of the deformation parameter $\pmb{\xi}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Linearised solution

We obtain

$$\mathsf{f} = 1 + \frac{2\xi \log \cosh \rho}{\sinh^2 \rho} + \mathcal{O}(\xi^2)$$

After the change of coordinate $\hat{\psi} = \psi - \frac{2}{1-4\mathsf{c}} \mathsf{t}$, $\mathsf{y} = \mathsf{t}$ the metric reads

$$\mathrm{d}\mathbf{s}^2 = \mathrm{d}\rho^2 - \cosh^2\rho \mathrm{d}\mathbf{t}^2 + \frac{1}{4}\sinh^2\rho\left(\sigma_1^2 + \sigma_2^2 + \sigma_3^2\right) + [\mathrm{explicit}\ \mathcal{O}(\xi)]$$

and the gauge field

$$\mathsf{A} = \frac{1}{2\sqrt{3}} \mathrm{d} \mathsf{t} - \frac{\sqrt{3}}{4} \xi \left[1 - \frac{2\log\cosh\rho}{\sinh^2\rho} \right] \sigma_3 + \mathcal{O}(\xi^2)$$

All the UV parameters are expressed in terms of the single IR parameter:

$$\begin{aligned} a_0 &= \frac{1}{4} + \frac{\xi}{16} \left(1 - 4\log 2 \right) + \mathcal{O}(\xi^2) & a_2 &= -\frac{1}{16} - \frac{3\xi}{32} \left(1 + 4\log 2 \right) + \mathcal{O}(\xi^2) \\ a_4 &= \frac{3\xi}{32} \left(\frac{3}{16} - \log 2 \right) + \mathcal{O}(\xi^2) & a_6 &= \frac{\xi}{512} \left(\frac{113}{48} - 7\log 2 \right) + \mathcal{O}(\xi^2) \\ c &= \frac{3}{8} \xi + \mathcal{O}(\xi^2) \end{aligned}$$

イロト 不得 トイヨト イヨト 二日

Numerics

Figure: Different values of the IR parameter ξ are indicated on the curves. Asymptotically, this shows the value of the parameter $v^2 = 1 - 4c$, controlling the squashing of the boundary S_v^3

$$ds_{bdry}^{2} = (2a_{0})^{2} \left[-\frac{1}{v^{2}} dt^{2} + \frac{1}{4} \left(\sigma_{1}^{2} + \sigma_{2}^{2} + v^{2} \sigma_{3}^{2} \right) \right]$$

Relation between **UV** and **IR** parameters

Figure: The squashing ν ranges between 0 and ∞ for $4.2\gtrsim\xi\gtrsim-0.7.$ The red line represents the relation obtained from the linearised analysis around the AdS_5 solution at $\xi=0$

The renormalised on-shell action

• The holographically renormalised on-shell action is

$$\mathsf{S}_{ ext{ren}} = \lim_{
ho o \infty} \left(\mathsf{S}_{ ext{bulk}} + \mathsf{S}_{ ext{GH}} + \mathsf{S}_{ ext{ct}}
ight)$$

• The on-shell bulk action can be written as

$$S_{\rm bulk} = -\frac{1}{2\pi G\ell^2} \int\!\!\mathrm{d}^5 x \sqrt{g} - \frac{1}{12\pi G} \int \mathrm{d}(A \wedge *_5 F) \label{eq:Sbulk}$$

where the second term is a total derivative. In fact, also the first one is, so that the bulk on-shell action reduces to a boundary term

• Notice S_{bulk} depends on the gauge for A. Under a gauge transformation $\delta A = \delta A_t dt$, where δA_t is a constant, the on-shell action changes by

$$\delta \mathsf{S}_{\mathrm{bulk}} = -\frac{\delta \mathsf{A}_{t}}{12\pi\mathsf{G}} \int \mathrm{d}t \int_{\mathsf{S}^{3}_{\mathrm{bdry}}} \mathsf{F}_{\mathsf{F}}$$

• In some previous formulas for **A** we picked a specific gauge for **A**

イロト イポト イヨト イヨト

Euclidean on-shell action

- This gauge is such that $\mathcal{L}_{\frac{\partial}{\partial t}}\zeta = \mathcal{L}_{\frac{\partial}{\partial t}}\epsilon = 0$, therefore the spinors are t independent. In any other gauge, the spinor acquires a phase $\sim e^{i\delta A_t t}$
- In this gauge, we can do a simple analytic continuation $t\to it$, to obtain a boundary Euclidean geometry with $S^1\times S^3$ topology
- The Euclidean boundary metric and gauge field are

$$ds_{bdry}^{2} = \frac{1}{v^{2}}dt^{2} + \frac{1}{4}\left(\sigma_{1}^{2} + \sigma_{2}^{2} + v^{2}\sigma_{3}^{2}\right)$$
$$\frac{\sqrt{3}}{\ell}A_{bdry} = \frac{i}{2\ell}dt + \frac{1}{2}(v^{2} - 1)\sigma_{3}$$

• Both the bulk metric and the bulk gauge field become complex. The analytically continued on-shell action remains real and reads

$$I = \frac{\pi \ell^2 \Delta_t}{G} \left[\frac{2}{27v^2} + \frac{2}{27} - \frac{13}{108}v^2 + \frac{19}{288}v^4 \right]$$

イロト イポト イヨト イヨト

Holographic energy-momentum and R-current

• Computing the holographic energy-momentum tensor

$$\mathsf{T}_{\mathsf{i}\mathsf{j}} = -rac{2}{\sqrt{\mathsf{h}}}rac{\delta \mathsf{S}_{\mathrm{reg}}}{\delta \mathsf{h}^{\mathsf{i}\mathsf{j}}}$$

the holographic trace anomaly vanishes $\langle T_i^i \rangle = 0$, and there is no log divergence in I, in agreement with [Cassani-DM]

• From the holographic R-symmetry current

$$\mathsf{j}^\mathsf{i} = rac{1}{\sqrt{\mathsf{h}}} rac{\delta \mathsf{S}_{\mathrm{reg}}}{\delta \mathsf{A}_\mathsf{i}}$$

we can compute the associated holographic conserved charge (R-charge)

$$\mathbf{Q} = \int_{\varSigma} \mathrm{d}^3 \mathsf{x} \sqrt{\gamma} \, \mathsf{u}_i \langle \mathsf{j}^\mathsf{i} \rangle \; = \; \frac{1}{4\pi \mathsf{G}} \int_{\varSigma} \left(\ast_5 \mathsf{F} + \frac{4}{3\sqrt{3}} \mathsf{A} \wedge \mathsf{F} \right)$$

(日) (周) (三) (三)

Partition function and supersymmetric index

• Master formula of the AdS/CFT correspondence:

$$\mathrm{e}^{-S_{\mathrm{gravity}}[M_5]} = Z_{\mathrm{QFT}}[M_4 = \partial M_5] \qquad \mathrm{for} \qquad N \to \infty$$

• $M_5 \simeq S^1 \times \mathbb{R}^4 \Rightarrow$ path integral on $M_4 \simeq S^1 \times S^3$ with periodic boundary conditions for the fermions on S^1 , is precisely the supersymmetric partition function on $M_4 = \mathcal{H}_{p,q} \simeq S^3$

$$\mathsf{Z}[\mathcal{H}_{\mathsf{p},\mathsf{q}}] \;=\; \mathrm{e}^{-\mathcal{F}(\mathsf{p},\mathsf{q})} \; \mathcal{I}(\mathsf{p},\mathsf{q})$$

where $\mathcal{I}(\mathbf{p},\mathbf{q})$ is the supersymmetric index with \mathbf{p},\mathbf{q} fugacities

• The (supersymmetric) Casimir energy may be defined as $(\beta \sim \log \mathbf{p} \sim \log \mathbf{q})$

$$\mathsf{E}_{ ext{susy}} \equiv - \lim_{eta o \infty} rac{\mathrm{d}}{\mathrm{d}eta} \log \mathsf{Z}_{ ext{QFT}}[\mathsf{S}^1_eta imes \mathsf{M}_3]$$

• Using known facts that $S_{gravity} = O(N^2)$ and in large N limit $\mathcal{I} = O(N^0)$, we see the entire contribution comes from $\mathcal{F}(p,q)!$

Supersymmetric Casimir energy

• Our M₄ turns out to be a Hopf surface with parameters

$$\mathbf{p} = \mathbf{q} = e^{-\frac{\Delta_t}{\ell \mathbf{v}^2}} \equiv e^{-\beta}$$

so although the metric is a non-trivial deformation of the round case, the complex structure is essentially the standard one

• Inserting these values in our general formula for the pre-factor we obtain

$$-\mathcal{F}=\frac{4}{27}\beta\left(\mathbf{a}+3\,\mathbf{c}\right)$$

• For a superconformal quiver with gravity dual $(a = c = O(N^2))$ we can compare E_{susy} with the gravity side using standard formula relating the coefficient a = c to the 5d Newton constant

$$\mathsf{E}_{\mathrm{susy}} = \frac{16}{27} \, \mathsf{a} = \frac{2}{27} \frac{\pi \ell^3}{\mathsf{G}} \quad \text{for} \quad \mathsf{N} \to \infty$$

12 August 2014

34 / 37

Comparison with gravity

Fact: we have computed the holographically renormalised on-shell action (in the gauge where $\mathcal{L}_{\frac{\partial}{\partial t}} \epsilon = 0$), as a function of the squashing parameter

$$\mathbf{I} = \frac{\Delta_{\rm t}}{\ell {\rm v}^2} \, \frac{\pi \ell^3}{{\rm G}} \, \left[\frac{2}{27} + \frac{2}{27} {\rm v}^2 - \frac{13}{108} {\rm v}^4 + \frac{19}{288} {\rm v}^6 \right]$$

Fact: in the limit $v^2 = 1$ this reduces to $\frac{1}{\Delta_t} = \frac{3}{32} \frac{\pi \ell^2}{G}$, which [Balasubramanian-Kraus] interpreted as the "Casimir energy on S^3 "

We would like to interpret the first red term in I as the relevant Casimir energy, to be compared with the field theory result

The $v^2 = 1$ limit of this gives $\frac{2}{27} \frac{\pi \ell^2}{G}$. However, the Casimir energy to which [Balasubramanian-Kraus] refer is $\langle 0|H|0 \rangle$ of a Hamltonian different form H_{BPS}!

Presumably there are **new** finite holographic counterterms that must be included to render the full bulk+boundary sugra action supersymmetric. The following is just an example of how it might work...

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Finite counterterms and ambiguities

- In d = 5 holographic renormalisation does not determine unambiguously all the counterterms necessary to render the on-shell sugra action finite
- There are four independent types of standard counterterms, which are finite on removing the UV cut-off (because scale-invariant)

$$\begin{split} \Delta \mathsf{S} &= \frac{\ell^3}{8\pi\mathsf{G}} \int_{\partial\mathsf{M}} \mathrm{d}^4 \mathsf{x}\sqrt{\mathsf{h}} \left(\alpha\,\mathcal{E} + \beta\,\mathsf{C}_{\mathsf{i}\mathsf{j}\mathsf{k}\mathsf{l}}\mathsf{C}^{\mathsf{i}\mathsf{j}\mathsf{k}\mathsf{l}} + \gamma\,\mathsf{R}^2 - \frac{\delta}{\ell^2}\mathsf{F}_{\mathsf{i}\mathsf{j}}\mathsf{F}^{\mathsf{i}\mathsf{j}} \right) \\ &\propto \frac{\gamma}{4} \left(4 - \mathsf{v}^2 \right)^2 + \frac{1}{6} \left(8\beta - \delta \right) \left(1 - \mathsf{v}^2 \right)^2 \end{split}$$

- Has the correct polynomial dependence on v² to remove the unwanted terms in I. But there isn't a choice of γ, β, δ removing all terms simultaneously
- An independent term can be constructed using the complex structure: with the Ricci form of boundary geometry $\mathcal{R}_{ij} = \frac{1}{2} R_{ijkl} \mathcal{J}^{kl}$ we obtain

$$\mathsf{I} - \frac{1}{108} \frac{\ell^3}{8\pi \mathsf{G}} \int_{\partial \mathsf{M}} \mathrm{d}^4 x \sqrt{\mathsf{h}} \left(\frac{7}{24} \mathsf{R}^2 + \frac{17}{\ell^2} \mathsf{F}_{ij} \mathsf{F}^{ij} - \mathcal{R}_{ij} \mathcal{R}^{ij} \right) \; = \; \frac{2}{27} \frac{\Delta_t}{\ell v^2} \frac{\pi \ell^3}{\mathsf{G}}$$

- 4 週 1 - 4 三 1 - 4 三 1

Outlook

- Computed partition function on general four-dimensional Hopf surfaces \rightarrow supersymmetric index + Casimir energy
- Five-dimensional gravity duals harder to construct explicitly then four-dimensional ones we have obtained one non-trivial example
- Explore the role of the supersymmetric Casimir energy both in the field theory and in the gauge/gravity duality → reconcile with holographic renormalization
- Challenge: compute partition function of *N* = 1 field theories on compact Hermitian manifolds (e.g. Kähler) → instantons, vortices, holomorphic invariants...

イロト イポト イヨト イヨト