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Outline

© Introduction
@ Part I: supersymmetric localization

© Part II: gauge/gravity duality

| will focus on four-dimensional field theories and five-dimensional gravity duals
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Gauge/Gravity duality

Equivalence between (quantum) gravity in bulk space-times and quantum

field theories on their boundaries

CFT lives on the

boundary of AdS
AdS/CFT
QFT <:> Gravity
Strongly coupled Weakly coupled
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Localization

For certain supersymmetric field theories defined on compact curved
Riemannian manifolds the path integral may be computed exactly

Localization: functional integral over all fields of a theory —
integral /sum over a reduced set of field configurations

Saddle point around a supersymmetric locus gives the exact answer

A priori the path integral (“partition function” Z) depends on the
parameters of the theory and of the background geometry
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Supersymmetry

@ When bulk and boundary are supersymmetric we can perform detailed

computations on both sides and (in certain limits) compare them

supersymmetric solutions of

in th Ik . .
@ Supersymmetry in the bulk = supergravity equations

“rigid” curved

@ Supersymmetry on the boundary = space supersymmetry
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Prequel: localization on the round three-sphere

@ Supersymmetric localization attributed to [Pestun]: A/ = 2 four-dimensional
QFT on round S* — followed by results in three dimensions [J. Sparks’ talk]

@ Any d = 3, N = 2 gauge theory on the round S3, preserves supersymmetry
[Kapustin-Willet-Yaakov], [Jafferis], [Hama-Hosomichi-Lee]. Key ingredient:
on the (unit-radius) round S3 there exist Killing spinors x

Vix = 37X

@ Full path integral — matrix integral with integrand a super-determinant where
“most”, but not all eigenvalues cancel out:

det Dsorm ] ferm eigenvalues [T unpaired ferm eigenvalues

det Dy os - [ ] bos eigenvalues - [ unpaired bos eigenvalues
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Four dimensional A/ = 1 supersymmetric field theories

@ Main character: d = 4 supersymmetric gauge theories with “matter”

Supersymmetry organises the fields in multiplets, containing fields with
different spin

Vector multiplet: gauge field A (connection on a bundle); Weyl spinor X;
“auxiliary” scalar D (sort of Lagrange multiplier), all transforming in the
adjoint representation of a group G

Chiral multiplet (the “matter”): complex scalar ¢»; Weyl spinor 1;
“auxiliary” scalar F, all transforming in a representation R of the group G

In flat space with Lorentzian signature, supersymmetric Lagrangians
containing these fields are text-book material (Euclidean space has some
extra caveats)
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Four dimensional A/ = 1 supersymmetric field theories

For example, defining D,, = 8,, — iAH-, where - denotes action on the
appropriate representation, we have

L = (D"¢)'D,¢ +iyTa"Duyp + . ..

@ Somewhat strangely, rigid supersymmetry in curved space (Euclidean or
Lorentzian) addressed systematically only in the 2010's

@ But local supersymmetry studied since long time ago — supergravity

[Festuccia-Seiberg|: take supergravity with some gauge and matter fields
and appropriately throw away gravity — “rigid limit". Simple but correct

Important: in the process of throwing away gravity, some extra fields of the
supergravity multiplet remain, but are non-dynamical — background fields
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Rigid supersymmetric four-manifolds

@ Rigid limit of "new minimal” supergravity — Killing spinor equation for
d = 4, N/ = 1 gauge theories on curved space

(Vi —iAL) C+ iV + VYo, ¢ =0

The A, V,, are background fields and ¢ is a supersymmetry parameter

In Euclidean signature: equivalent to Hermitian metric
[Klare-Tomasiello-Zaffaroni], [Dumitrescu-Festuccia-Seiberg]

@ In Lorentzian signature: equivalent to null conformal Killing vector
[Cassani-Klare-DM-Tomasiello-Zaffaroni]

@ Main motivation: localization in four dimensional A = 1 gauge theories —
[Assel-Cassani-DM]
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Localization on four-manifolds: strategy outline

@ Work in Euclidean signature and start with generic background fields A,,,
V,, associated to a Hermitian manifold

Construct “susy-exact” Lagrangians for the vector and chiral multiplets —
set-up localization on a general Hermitian manifold

@ Restrict to backgrounds admitting a second spinor E with opposite R-charge
— show that is possible to pick a real A

Further restrict to manifolds with topology Ms ~ S! x S3

@ Prove that the localization locus is given by gauge field A, = constant,
with all other fields (A, D; ¢, ¥, F) vanishing

Partition function reduces to a matrix integral over the Kaluza-Klein
(Fourier) modes of A, on S! — integrand is infinite product of 3d
super-determinants — use the 3d results! [J. Sparks’ talk]
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Localizing Lagrangians and saddle point equations

@ The bosonic parts of the localizing terms constructed with ¢ are
1 1
+ v
. = tr (47,‘;)?(““ - 4D2>

['chiral = (guu - iJ#u) DM$DV¢ + FF

Where D, = V,, —iqrA, — iA,-

@ In Euclidean signatures all fields are doubled, and to evaluate the path
integral one needs to impose reality conditions

@ With the obvious ones, A, D Hermitian, ¢~S = ¢, F= F' we obtain the
saddle point equations

vector : ]:;(Lt) =0, D=0
chiral : J#,D’¢ = iD*¢, F =0
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Aside: localization on general Hermitian manifolds

@ The saddle-point condition of the vector multiplet is the instanton equation

on My. | don’t have to explain this equation at this workshop!

Z= Z /m [iI‘ISt. measure] Z jassic Zl—loop

charge n inst st. moduli space

@ Instantons on Hermitian manifolds (HYM) — hard problem (?)

@ The saddle-point condition of the chiral multiplet can be rewritten as
dp® = 0 — holomorphic sections of instanton bundle (4 further twist)

Curiously, it is possible to deform the instanton equation to obtain the
“vortex” equations [Bradlow|, [Garcia-Prada]

JF* = ¢l + 7, ,,F¥ =0
pp =0

@ Exploited in physics to perform an alternative localization in some cases
(“Higgs branch” localization), [Benini-Cremonesi,...]
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Geometries with two supercharges of opposite R-charge
@ Assume that there exist a second spinor E with opposite chirality, obeying
the rigid new minimal equation
(Vo +iAL) ¢ —iVC —iV¥6,,C=0

@ Geometry is a special case of ambihermitian manifold, which may be neatly
characterised by the complex holomorphic Killing vector field KH = (o*(

@ The metric takes a canonical form in terms of complex coordinates z, w
ds? = 2?[(dw + hdz)(dw + hdz) + c2dzdz]

with £2(z, z), c(z, Z), h(z, Z) arbitrary functions
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Choice of real A

@ The background fields take the form

V = dlog 2+ - Im (8: K) + oK
A= ldciog (2%) + 1d +<3 : 8h>K
= —dlo c)+ = —k— ——0;
2° 8 29T 27T e

@ w is a phase entering in the Killing spinors, that can be fixed requiring A to
be globally well-defined

@ K is an arbitrary function a priori, that drops out from the rigid
supersymmetry equations — refer to as “k-gauge”

@ We fix K so that the last term in A vanishes and therefore A is real
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“Toric” Hopf surfaces

@ A Hopf surface is essentially a four-dimensional complex manifold with the
topology of St x S3, and it may be defined as a compact complex surface
whose universal covering is C2 — (0, 0)

@ Described as quotient of C2 — (0, 0), with coordinates z;, z; identified as

(z1,22) ~ (P21, q22)

where p, q are in general two complex parameters
@ We show that on a Hopf surface we can take a very general metric
ds? = 22d7? + f2dp? + mydpde, ,LJ=1,2
while preserving two spinors ¢ and 6

@ 7 is a coordinate on S!, while the 3d part has coordinates p, 1, ¢2,
describing S* as a T? fibration over an interval — “toric”
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The matrix model

@ The localizing locus simplifies drastically, due to “doubling the equations

imposed”, e,g. — Ft = F~ = 0 — full contribution comes from
zero-instanton sector! Flat connections A, = constant, and all other fields
vanishing

@ The localized path integral is reduced to exactly the same 3d computation
done in [Alday-DM-Richmond-Sparks] (with no CS terms). More precisely,
to an infinite product of that, one for each KK supermultiplet mode

@ The Hopf surface complex structure data p, q maps to the almost contact
structure data by, by as: p = e 27Ib1l g = e~ 2712l

@ Infinite products regularised using fancy mathematical formulas. E.g.

chiral __ chiral (n,p)
Zl loop — H H Zl loop (3d) 0-0 ]
PEAR nEZ

© W . ,

v, v 2 5

— e™Peni @™ ¥eni | I I, (e TP Ay (pq)z . P q)
pPEAR
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Supersymmetric index

@ The prefactor ng), is anomalous and must cancel after combining with the
vector multiplet contribution — anomaly cancellation conditions “for free”

@ The rest combines into the following formula

Z[Hpq] = e 7 (P:9) Z(p,q)

where Z(p, q) is the supersymmetric index with p, q fugacities

Z(p,q) = M/i H 9(za,p)0(z_a,q)H H Fe(zp(pq)%,p,q)

W] i 27riza€A+ s,
which may be defined as a sum over states as
Z(p,q) = Tr[(=1)Fp+ —iq' ¥~ F]

@ The fact that the index is computed by the localized path integral on a Hopf
surface was anticipated by [Closset-Dumitrescu-Festuccia-Komargodski]
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Supersymmetric Casimir energy

@ The path integral + regularisation produced an extra pre-factor F(p, q)
explicitly given by

At |b1|+|b2|)
Fp,q) = — (|b by| — T 1721 _
(p.a) 3 (l 1l + [bal |b1||ba] (a=c)
4 b b,|)3
m (|b1] + [b2]) (Gc—2a)
27 |by||by|

where

3 1
a=_BuRP-—uR), ¢ = — (9uR®—-5uR)
32 32
@ Invariant depending only on complex structure and the trace anomaly
coefficients a, ¢ — should not be merely a “counterterm”, expect to encode
physical/mathematical properties

@ We argued that it is essentially the “vacuum energy” — refer to as
supersymmetric Casimir energy Egysy
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More comments on the supersymmetric Casimir energy
@ How does one know the result does not depend on the regularisation
procedure, e.g. zeta-function?

@ One must show that there are no finite, supersymmetric, “counterterms” —
integrals of local densities

@ Conjecture: there are no finite local counterterms (some exist, but vanish)
[Assel-Cassani-DM)] (unpublished)

@ Supersymmetric Casimir energy can be recovered from the Hamiltonian
formalism [Lorenzen-DM] (to appear)

(Ol Hgps |0> = Esusy

where Hgps is an appropriate supersymmetric Hamiltonian, such that
[HBPS’ qusy] =0
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Constructing gravity duals

Idea: find a supersymmetric filling Mg of a given My in the context of d = 5,
gauged supergravity, and use the fact that any such solution uplifts to a
supersymmetric solution Ms X Y5 of Type |IB supergravity

1 12 8
Action*: S= —— [ |d® R — F? — ——AAFAF
ction lﬁﬂG/[ x\/§< +£2> 33 }
KSE: |V +L( “X — 45 ) F ~ L —2v3ia) | e=o0
: 7 43 Y uY vA T 5y T IRp)| €=

Dirichlet problem: find (Ms, g,,.,, A) such that
@ The conformal boundary of Mg is My
@ The gauge field A restricts to A = A(*) — %V(")
@ The Killing spinor € restricts to the Killing spinor x

Check: The on-shell sugra action should reproduce the Casimir energy!

*From now on, A will denote the five-dimensional gravi-photon field, while the four-dimensional background fields A(4) ) V(4)

will not appear in the formulas
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3d/4d gravity duals

@ This can be repeated with “4d" replaced by “3d" and “5d" replaced by “4d"
almost step by step: in fact, this is where we started from [J. Sparks’ talk]

@ Solutions constructed by: [DM,Passias,Sparks,Farquet,Lorenzen] and some
variations by [Huang-Rey-Zhou;Nishioka]

@ In d = 3 field theories on M3 ~ S3, the large N limit of the localized
partition function matches exactly the d = 4 supergravity action, evaluated
on a solution — perfect cross-check of gauge/gravity and localization!

@ This “sets the standard” for similar constructions in different dimensions
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5d gravity duals

@ s there any known example of a 5d gravity solution whose conformal
boundary is a Hermitian manifold?
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5d gravity duals

@ s there any known example of a 5d gravity solution whose conformal
boundary is a Hermitian manifold? Yes: Euclidean global AdSs, with
conformal boundary the round S! x S3
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5d gravity duals

@ Is there any known example of a 5d gravity solution whose conformal
boundary is a Hermitian manifold? Yes: Euclidean global AdSs, with
conformal boundary the round S x S3

Gravity dual of a generic Hermitian manifold is a very hard problem, e.g. no
isometries. Moreover, no localization results (yet) so there is nothing to
compare with

Start investigating solutions whose conformal boundary My is a more
general Hopf surface, thus My ~ st x s3

@ Useful technical simplification: SU(2) x U(1) x U(1) symmetry — ODE's
— singles out St x S3

squashed

@ We looked for a supersymmetric “filling” Mg of this boundary, in minimal
gauged supergravity in d = 5 [Cassani-DM]
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Gutowski-Reall equation

Existence of one solution € yields a canonical form of the metric and the gauge
field [Gauntlett-Gutowski]. In the “time-like” class the metric reads

ds’ = —f*(dy + w)® + f~1ds}

where d52B is a Kahler metric and ai is a time-like (in the bulk) Killing vector
Further imposing an ansatz with SU(2) x U(1) x U(1)y symmetry, with metric

dsy = dp® + a*(61 + 63) + (2aa’)?53

relates all functions in the ansatz, e.g.
£2
f_l — [4(a/)3 +7a a’a” —a’ + aza///]
12a2a’

reducing the susy conditions to one ODE for one function a(p). This is the ODE
derived by [Gutowski-Reall], who also found a one-parameter family of black-hole
solutions, i.e. with event horizon

We found a new one-parameter solution s.t. [CM] N [GR] = AdSs
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The solution

Solve the ODE order by order by plugging a “UV" expansion (p — o0)

e~ 2r e 4
— aoP 2
a=age” |1+ (ap + cp) v, + (a4 + as,1p + as 2p°) o + ...
0 0

and an “IR" expansion (p — 0)
a= a(I)R + a{Rp + angz + aﬁRp?' +...
Require that in the UV the solution is AIAdSs and in the IR it is smooth with no

horizon. Globally R = R x R*

UV: five free parameters ag, c, @z, as, ag. IR: one free parameter £. A solution
interpolating between IR and UV is shown to exist

@ analytically as a linearised (in &) perturbation of AdSs

© numerically for arbitrary values of the deformation parameter &

Dario Martelli (KCL) 12 August 2014 26 / 37



Linearised solution

We obtain
2¢ log cosh p

f=1+
sinh? p

+ O0(€?)

After the change of coordinate ¢ = 1 —

t, y = t the metric reads
1—4c

1
ds? = dp? — cosh?pdt® + = smh p (03 + o3 + 02) + [explicit O(¢)]

and the gauge field

1 V3 2 log cosh
A= —dt— ¢ [1 _ _gzp] o3 + O(£2)
2V3 4 sinh” p
All the UV parameters are expressed in terms of the single IR parameter:
ag = ;+—(1—4logZ)+O(E) a = —%——(1+4logz)+0(5)

_35( _ 2)+o - &y, 2)+o
2= (o @ a o= o (G —Tee )

3 2
=§§+O(§)
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Numerics

Gy /%0
35[0
30fF
25[
20f
150

10}

05F

00 05 10 15 20 25 30 ©

Figure: Different values of the IR parameter £ are indicated on the curves.
Asymptotically, this shows the value of the parameter v2 = 1 — 4c, controlling
the squashing of the boundary 53

1 1
dsf)d]ry = (2ag)? —ﬁdt2 + 2 (0'12 +0l + v20'32)

Dario Martelli (KCL) 12 August 2014 28 / 37



Relation between UV and IR parameters

0 1 2 3 4 d

Figure: The squashing v ranges between 0 and oo for 4.2 > £ > —0.7. The red
line represents the relation obtained from the linearised analysis around the AdSs
solution at £ = 0
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The renormalised on-shell action

@ The holographically renormalised on-shell action is

sren = lim (Sbulk + SGH + Sct)
p—ro0

@ The on-shell bulk action can be written as

— = [A(AAsF
ZGEZ/ XV8 = 155G | YA N*sF)

where the second term is a total derivative. In fact, also the first one is, so
that the bulk on-shell action reduces to a boundary term

sbulk

@ Notice Spuik depends on the gauge for A. Under a gauge transformation
OA = JA; dt, where dA; is a constant, the on-shell action changes by

dt

O0Sbulk =

*5F
127rG s3

bdry

@ In some previous formulas for A we picked a specific gauge for A
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Euclidean on-shell action

@ This gauge is such that L%C = L%e = 0, therefore the spinors are t

independent. In any other gauge, the spinor acquires a phase ~ eloAt

@ In this gauge, we can do a simple analytic continuation t — it, to obtain a
boundary Euclidean geometry with S* x S3 topology

@ The Euclidean boundary metric and gauge field are
1
dsbdry dt + ( 12 + 022 + V20'32)

V3

i 1
TAbdry = —dt+ 5("2 — 1) o3

2¢
@ Both the bulk metric and the bulk gauge field become complex. The
analytically continued on-shell action remains real and reads
TO2A, [ 2 2 13 , 19 ,
= — 4+ —= — —v —vV
G 27v2 27 108 288
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Holographic energy-momentum and R-current

@ Computing the holographic energy-momentum tensor

T2 05
7 Vh ohi

the holographic trace anomaly vanishes (Ti) = 0, and there is no log
divergence in I, in agreement with [Cassani-DM]

@ From the holographic R-symmetry current

-i 1 6sreg

we can compute the associated holographic conserved charge (R-charge)

Q= /d3x\/_u(1') 41G (5F+3\/§A/\F)
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Partition function and supersymmetric index
@ Master formula of the AdS/CFT correspondence:
e SeraviyMsl = 7 [Mg = OMs]  for N — oo

@ M5 ~ S! x R* = path integral on Ms ~ S x S3 with periodic boundary
conditions for the fermions on S!, is precisely the supersymmetric partition
function on Mg = H, q ~ S*

Z[Hp o]l = e~ (Pa) Z(p,q)

where Z(p, q) is the supersymmetric index with p, q fugacities

@ The (supersymmetric) Casimir energy may be defined as
(B ~ logp ~ logq)

o d
Ecusy = — ﬁll_}moo a5 log Zqrr[Sh X M3]

@ Using known facts that Sgravity = O(Nz) and in large N limit
Z = O(NP), we see the entire contribution comes from F(p, q)!
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Supersymmetric Casimir energy

@ Our My turns out to be a Hopf surface with parameters

so although the metric is a non-trivial deformation of the round case, the
complex structure is essentially the standard one

@ Inserting these values in our general formula for the pre-factor we obtain
F 1 B(a+3c¢)
—F = —-0B(a c
27

@ For a superconformal quiver with gravity dual (a = ¢ = O(N?)) we can
compare Egusy with the gravity side using standard formula relating the
coefficient a = ¢ to the 5d Newton constant

for N — oo
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Comparison with gravity

Fact: we have computed the holographically renormalised on-shell action (in the
gauge where L:%G = 0), as a function of the squashing parameter

A, w03 [ 2 2 2 13 " 19 /6
=—— |==+ Vv + —
w2 G |27 27 108 288
Fact: in the limit v2 = 1 this reduces to i = 332 e’ , which

[Balasubramanian-Kraus]| interpreted as the “Casimir energy on s3”

We would like to interpret the first red term in | as the relevant Casimir energy,
to be compared with the field theory result

The v2 = 1 limit of this gives 227 % However, the Casimir energy to which

[Balasubramanian-Kraus] refer is (O|H|0) of a Hamltonian different form Hgpsg!

Presumably there are new finite holographic counterterms that must be included
to render the full bulk+boundary sugra action supersymmetric. The following is
just an example of how it might work...
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Finite counterterms and ambiguities

@ In d = 5 holographic renormalisation does not determine unambiguously all
the counterterms necessary to render the on-shell sugra action finite

@ There are four independent types of standard counterterms, which are finite
on removing the UV cut-off (because scale-invariant)

£3

AS = ——
8nG

i é .
/ d*xvh (a E+ 3 C;jk.C'J"' + v R2 — *FijFU)
M EZ
1
“%(4_"2)2*‘6(85—5)(1—"2)2

@ Has the correct polynomial dependence on v to remove the unwanted terms
in I. But there isn't a choice of v, 3, d removing all terms simultaneously

@ An independent term can be constructed using the complex structure: with
the Ricci form of boundary geometry Rjj = %Rijkljkl we obtain

1 23 7 17 _ . N 2 A, w3
—— | d**Vvh|—R? —Fi-F”—’R;-R“) = -
108 87G /;,M X (24 t et i 270 G
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Outlook

@ Computed partition function on general four-dimensional Hopf surfaces —
supersymmetric index + Casimir energy

@ Five-dimensional gravity duals harder to construct explicitly then
four-dimensional ones — we have obtained one non-trivial example

@ Explore the role of the supersymmetric Casimir energy both in the field
theory and in the gauge/gravity duality — reconcile with holographic
renormalization

@ Challenge: compute partition function of A/ = 1 field theories on compact

Hermitian manifolds (e.g. K&hler) — instantons, vortices, holomorphic
invariants...
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