Supersymmetric localization and the gauge/gravity duality

Dario Martelli
King's College London
European
Research
Council
Based on work with B. Assel and D. Cassani
Riemann Workshop
Gauge Theories in Higher Dimensions
Leibniz Universität Hannover - 11-14 August 2014

Outline

(1) Introduction
(2) Part I: supersymmetric localization
(3) Part II: gauge/gravity duality

I will focus on four-dimensional field theories and five-dimensional gravity duals

Gauge/Gravity duality

Equivalence between (quantum) gravity in bulk space-times and quantum field theories on their boundaries

AdS/CFT

Strongly coupled

Weakly coupled

Localization

- For certain supersymmetric field theories defined on compact curved Riemannian manifolds the path integral may be computed exactly
- Localization: functional integral over all fields of a theory \rightarrow integral/sum over a reduced set of field configurations
- Saddle point around a supersymmetric locus gives the exact answer
- A priori the path integral ("partition function" \mathbf{Z}) depends on the parameters of the theory and of the background geometry

Supersymmetry

- When bulk and boundary are supersymmetric we can perform detailed computations on both sides and (in certain limits) compare them
- Supersymmetry in the bulk $\Rightarrow \begin{aligned} & \text { supersymmetric solutions of } \\ & \text { supergravity equations }\end{aligned}$
- Supersymmetry on the boundary $\Rightarrow \begin{aligned} & \text { "rigid" curved } \\ & \text { space supersymmetry }\end{aligned}$

Part I: Supersymmetric localization

Prequel: localization on the round three-sphere

- Supersymmetric localization attributed to [Pestun]: $\mathcal{N}=\mathbf{2}$ four-dimensional QFT on round $\mathbf{S}^{4} \rightarrow$ followed by results in three dimensions [J. Sparks' talk]
- Any $\mathbf{d}=\mathbf{3}, \boldsymbol{N}=\mathbf{2}$ gauge theory on the round $\mathbf{S}^{\mathbf{3}}$, preserves supersymmetry [Kapustin-Willet-Yaakov], [Jafferis], [Hama-Hosomichi-Lee]. Key ingredient: on the (unit-radius) round \mathbf{S}^{3} there exist Killing spinors χ

$$
\nabla_{\mathrm{i}} \chi=\frac{\mathrm{i}}{2} \gamma_{\mathrm{i}} \chi
$$

- Full path integral \rightarrow matrix integral with integrand a super-determinant where "most", but not all eigenvalues cancel out:

$$
\frac{\operatorname{det} D_{\text {ferm }}}{\operatorname{det} D_{\text {bos }}}=\frac{\prod \text { ferm eigenvalues }}{\prod \text { bos eigenvalues }}=\frac{\prod \text { unpaired ferm eigenvalues }}{\prod \text { unpaired bos eigenvalues }}
$$

Four dimensional $\mathcal{N}=1$ supersymmetric field theories

- Main character: $\mathbf{d}=4$ supersymmetric gauge theories with "matter"
- Supersymmetry organises the fields in multiplets, containing fields with different spin
- Vector multiplet: gauge field \mathcal{A} (connection on a bundle); Weyl spinor $\boldsymbol{\lambda}$; "auxiliary" scalar D (sort of Lagrange multiplier), all transforming in the adjoint representation of a group \mathbf{G}
- Chiral multiplet (the "matter"): complex scalar ϕ; Weyl spinor ψ; "auxiliary" scalar \mathbf{F}, all transforming in a representation \mathcal{R} of the group \mathbf{G}
- In flat space with Lorentzian signature, supersymmetric Lagrangians containing these fields are text-book material (Euclidean space has some extra caveats)

Four dimensional $\mathcal{N}=1$ supersymmetric field theories

- For example, defining $\mathrm{D}_{\mu}=\boldsymbol{\partial}_{\mu}-\mathrm{i} \mathcal{A}_{\mu}$, where \cdot denotes action on the appropriate representation, we have

$$
\mathcal{L}=\left(\mathbf{D}^{\mu} \phi\right)^{\dagger} \mathbf{D}_{\mu} \phi+\mathbf{i} \psi^{\dagger} \sigma^{\mu} \mathbf{D}_{\mu} \psi+\ldots
$$

- Somewhat strangely, rigid supersymmetry in curved space (Euclidean or Lorentzian) addressed systematically only in the 2010's
- But local supersymmetry studied since long time ago \rightarrow supergravity
- [Festuccia-Seiberg]: take supergravity with some gauge and matter fields and appropriately throw away gravity \rightarrow "rigid limit". Simple but correct
- Important: in the process of throwing away gravity, some extra fields of the supergravity multiplet remain, but are non-dynamical \rightarrow background fields

Rigid supersymmetric four-manifolds

- Rigid limit of "new minimal" supergravity \rightarrow Killing spinor equation for $\mathbf{d}=4, \mathcal{N}=1$ gauge theories on curved space

$$
\left(\nabla_{\mu}-\mathrm{i} \mathrm{~A}_{\mu}\right) \zeta+\mathrm{iV}_{\mu} \zeta+\mathrm{iV}^{\nu} \sigma_{\mu \nu} \zeta=0
$$

- The $\mathbf{A}_{\mu}, \mathbf{V}_{\mu}$ are background fields and ζ is a supersymmetry parameter
- In Euclidean signature: equivalent to Hermitian metric [Klare-Tomasiello-Zaffaroni], [Dumitrescu-Festuccia-Seiberg]
- In Lorentzian signature: equivalent to null conformal Killing vector [Cassani-Klare-DM-Tomasiello-Zaffaroni]
- Main motivation: localization in four dimensional $\mathcal{N}=\mathbf{1}$ gauge theories \rightarrow [Assel-Cassani-DM]

Localization on four-manifolds: strategy outline

- Work in Euclidean signature and start with generic background fields \mathbf{A}_{μ}, \mathbf{V}_{μ} associated to a Hermitian manifold
- Construct "susy-exact" Lagrangians for the vector and chiral multiplets \rightarrow set-up localization on a general Hermitian manifold
- Restrict to backgrounds admitting a second spinor $\tilde{\boldsymbol{\zeta}}$ with opposite R-charge \rightarrow show that is possible to pick a real \mathbf{A}
- Further restrict to manifolds with topology $\mathbf{M}_{4} \simeq \mathbf{S}^{\mathbf{1}} \times \mathbf{S}^{\mathbf{3}}$
- Prove that the localization locus is given by gauge field $\mathcal{A}_{\boldsymbol{\tau}}=$ constant, with all other fields ($\boldsymbol{\lambda}, \mathrm{D} ; \phi, \boldsymbol{\psi}, \mathbf{F}$) vanishing
- Partition function reduces to a matrix integral over the Kaluza-Klein (Fourier) modes of $\mathcal{A}_{\boldsymbol{\tau}}$ on $\mathbf{S}^{\mathbf{1}} \rightarrow$ integrand is infinite product of 3d super-determinants \rightarrow use the 3d results! [J. Sparks' talk]

Localizing Lagrangians and saddle point equations

- The bosonic parts of the localizing terms constructed with ζ are

$$
\begin{aligned}
& \mathcal{L}_{\text {vector }}^{(+)}=\operatorname{tr}\left(\frac{1}{4} \mathcal{F}_{\mu \nu}^{(+)} \mathcal{F}^{(+) \mu \nu}-\frac{1}{4} \mathrm{D}^{2}\right) \\
& \mathcal{L}_{\text {chiral }}=\left(\mathrm{g}^{\mu \nu}-\mathrm{i} \mathbf{J}^{\mu \nu}\right) \mathrm{D}_{\mu} \widetilde{\phi} \mathbf{D}_{\nu} \phi+\widetilde{\mathbf{F}} \mathbf{F}
\end{aligned}
$$

Where $\mathbf{D}_{\mu}=\nabla_{\mu}-\mathbf{i q}_{\mathrm{R}} \mathbf{A}_{\mu}-\mathbf{i} \mathcal{A}_{\mu}$.

- In Euclidean signatures all fields are doubled, and to evaluate the path integral one needs to impose reality conditions
- With the obvious ones, \mathcal{A}, D Hermitian, $\widetilde{\phi}=\phi^{\dagger}, \widetilde{\mathbf{F}}=\mathbf{F}^{\dagger}$, we obtain the saddle point equations
vector :

$$
\begin{gathered}
\mathcal{F}_{\mu \nu}^{(+)}=0, \quad \mathrm{D}=0 \\
\mathrm{~J}^{\mu}{ }_{\nu} \mathrm{D}^{\nu} \widetilde{\phi}=\mathrm{iD}^{\mu} \widetilde{\phi}, \quad \mathrm{F}=0
\end{gathered}
$$

chiral :

Aside: localization on general Hermitian manifolds

- The saddle-point condition of the vector multiplet is the instanton equation on $\mathbf{M}_{\mathbf{4}}$. I don't have to explain this equation at this workshop!

$$
Z=\sum_{\text {charge } n \text { inst. }} \int_{\text {inst. moduli space }}[\text { inst. measure }] Z_{\text {classic }} \mathbf{Z}_{1 \text {-loop }}
$$

- Instantons on Hermitian manifolds (HYM) \rightarrow hard problem (?)
- The saddle-point condition of the chiral multiplet can be rewritten as $\bar{\partial}_{\mathrm{D}} \phi=\mathbf{0} \rightarrow$ holomorphic sections of instanton bundle (+ further twist)
- Curiously, it is possible to deform the instanton equation to obtain the "vortex" equations [Bradlow], [Garciá-Prada]

$$
\begin{gathered}
\mathrm{J}_{\mu \nu} \mathcal{F}^{\mu \nu}=\phi^{\dagger} \phi+\tau, \quad \Omega_{\mu \nu} \mathcal{F}^{\mu \nu}=0 \\
\bar{\partial}_{\mathrm{D} \phi} \phi=0
\end{gathered}
$$

- Exploited in physics to perform an alternative localization in some cases ("Higgs branch" localization), [Benini-Cremonesi,...]

Geometries with two supercharges of opposite R-charge

- Assume that there exist a second spinor $\widetilde{\zeta}$, with opposite chirality, obeying the rigid new minimal equation

$$
\left(\nabla_{\mu}+i A_{\mu}\right) \widetilde{\zeta}-i V_{\mu} \widetilde{\zeta}-i V^{\nu} \widetilde{\sigma}_{\mu \nu} \widetilde{\zeta}=0
$$

- Geometry is a special case of ambihermitian manifold, which may be neatly characterised by the complex holomorphic Killing vector field $\mathbf{K}^{\mu}=\boldsymbol{\zeta} \boldsymbol{\sigma}^{\mu} \widetilde{\boldsymbol{\zeta}}$
- The metric takes a canonical form in terms of complex coordinates \mathbf{z}, \mathbf{w}

$$
\mathrm{ds}^{2}=\Omega^{2}\left[(\mathrm{dw}+\mathrm{hdz})(\mathrm{d} \overline{\mathrm{w}}+\overline{\mathrm{h}} \mathrm{~d} \bar{z})+\mathrm{c}^{2} \mathrm{dzd} \bar{z}\right]
$$

with $\Omega(\mathrm{z}, \overline{\mathbf{z}}), \mathbf{c}(\mathbf{z}, \overline{\mathbf{z}}), \mathbf{h}(\mathrm{z}, \overline{\mathbf{z}})$ arbitrary functions

Choice of real \mathbf{A}

- The background fields take the form

$$
\begin{gathered}
\mathrm{V}=\mathrm{d}^{\mathrm{c}} \log \Omega+\frac{2}{\Omega^{2} \mathrm{c}^{2}} \operatorname{Im}\left(\partial_{\overline{\mathrm{z}}} \mathbf{h} \mathrm{~K}\right)+\kappa \mathrm{K} \\
\mathbf{A}=\frac{1}{2} \mathrm{~d}^{\mathrm{c}} \log \left(\Omega^{3} \mathbf{c}\right)+\frac{1}{2} \mathrm{~d} \omega+\left(\frac{3}{2} \kappa-\frac{\mathbf{i}}{\Omega^{2} \mathbf{c}^{2}} \partial_{\overline{\mathrm{z}}} \mathbf{h}\right) \mathrm{K}
\end{gathered}
$$

- $\boldsymbol{\omega}$ is a phase entering in the Killing spinors, that can be fixed requiring \mathbf{A} to be globally well-defined
- κ is an arbitrary function a priori, that drops out from the rigid supersymmetry equations \rightarrow refer to as " κ-gauge"
- We fix $\boldsymbol{\kappa}$ so that the last term in \mathbf{A} vanishes and therefore \mathbf{A} is real

"Toric" Hopf surfaces

- A Hopf surface is essentially a four-dimensional complex manifold with the topology of $\mathbf{S}^{1} \times \mathbf{S}^{3}$, and it may be defined as a compact complex surface whose universal covering is $\mathbb{C}^{2}-(\mathbf{0}, \mathbf{0})$
- Described as quotient of $\left.\mathbb{C}^{2}-\mathbf{(0 , 0}\right)$, with coordinates $\mathbf{z}_{1}, \mathbf{z}_{2}$ identified as

$$
\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) \sim\left(\mathrm{pz}, \mathrm{z}_{1},\right)
$$

where \mathbf{p}, \mathbf{q} are in general two complex parameters

- We show that on a Hopf surface we can take a very general metric

$$
\mathrm{ds}^{2}=\Omega^{2} \mathrm{~d} \tau^{2}+\mathrm{f}^{2} \mathrm{~d} \rho^{2}+\mathrm{m}_{\mathrm{J}} \mathrm{~d} \varphi_{\mathrm{I}} \mathrm{~d} \varphi_{\mathrm{J}} \quad \mathrm{I}, \mathrm{~J}=1,2
$$

while preserving two spinors ζ and $\widetilde{\zeta}$

- τ is a coordinate on \mathbf{S}^{1}, while the 3d part has coordinates $\rho, \varphi_{1}, \varphi_{2}$, describing $\mathbf{S}^{\mathbf{3}}$ as a $\mathbf{T}^{\mathbf{2}}$ fibration over an interval \rightarrow "toric"

The matrix model

- The localizing locus simplifies drastically, due to "doubling the equations imposed", e,g. $\rightarrow \mathcal{F}^{+}=\mathcal{F}^{-}=\mathbf{0} \rightarrow$ full contribution comes from zero-instanton sector! Flat connections $\mathcal{A}_{\boldsymbol{\tau}}=$ constant, and all other fields vanishing
- The localized path integral is reduced to exactly the same 3d computation done in [Alday-DM-Richmond-Sparks] (with no CS terms). More precisely, to an infinite product of that, one for each KK supermultiplet mode
- The Hopf surface complex structure data \mathbf{p}, \mathbf{q} maps to the almost contact structure data $\mathbf{b}_{1}, \mathbf{b}_{\mathbf{2}}$ as: $\mathbf{p}=\mathrm{e}^{-2 \pi\left|\mathbf{b}_{1}\right|}, \mathbf{q}=\mathbf{e}^{-2 \pi\left|\mathbf{b}_{2}\right|}$
- Infinite products regularised using fancy mathematical formulas. E.g.

$$
\begin{gathered}
\mathbf{Z}_{1-\text { loop }}^{\text {chiral }}=\prod_{\rho \in \Delta_{\mathcal{R}}} \prod_{\mathrm{n} \in \mathbb{Z}} \mathbf{Z}_{1-\text { loop (3d) }}^{\text {chiral }}\left[\sigma_{0}^{(\mathrm{n}, \rho)}\right] \\
\rightarrow \mathrm{e}^{\mathrm{i} \pi \Psi_{\mathrm{chi}}^{(0)}} \mathrm{e}^{\mathrm{i} \pi \Psi_{\mathrm{chi}}^{(1)}} \prod_{\rho \in \Delta_{\mathcal{R}}} \Gamma_{\mathrm{e}}\left(\mathrm{e}^{2 \pi \mathrm{i} \rho_{\mathcal{A}_{0}}}(\mathbf{p q})^{\frac{\mathrm{r}}{2}}, \mathbf{p}, \mathbf{q}\right)
\end{gathered}
$$

Supersymmetric index

- The prefactor $\Psi_{\text {chi }}^{(1)}$ is anomalous and must cancel after combining with the vector multiplet contribution \rightarrow anomaly cancellation conditions "for free"
- The rest combines into the following formula

$$
\mathrm{Z}\left[\mathcal{H}_{\mathrm{p}, \mathrm{q}}\right]=\mathrm{e}^{-\mathcal{F}(\mathrm{p}, \mathrm{q})} \mathcal{I}(\mathrm{p}, \mathbf{q})
$$

where $\mathcal{I}(\mathbf{p}, \mathbf{q})$ is the supersymmetric index with \mathbf{p}, \mathbf{q} fugacities

$$
\mathcal{I}(\mathrm{p}, \mathrm{q})=\frac{(\mathrm{p} ; \mathrm{p})^{\mathrm{r}^{\mathrm{G}}(\mathrm{q} ; \mathbf{q})^{r^{G} \mathrm{G}}}}{|\mathcal{W}|} \int_{\mathrm{T}^{r G}} \frac{\mathrm{dz}}{2 \pi \mathrm{z} \mathrm{z}} \prod_{\alpha \in \Delta_{+}} \theta\left(\mathrm{z}^{\alpha}, \mathrm{p}\right) \theta\left(\mathrm{z}^{-\alpha}, \mathrm{q}\right) \prod_{J} \prod_{\rho \in \Delta_{J}} \Gamma_{\mathrm{e}}\left(\mathrm{z}^{\rho}(\mathrm{pq})^{\frac{r_{J}^{2}}{2}}, \mathrm{p}, \mathbf{q}\right)
$$

which may be defined as a sum over states as

$$
\mathcal{I}(\mathbf{p}, \mathbf{q})=\operatorname{Tr}\left[(-1)^{F} \mathbf{p}^{J+J^{\prime}-\frac{R}{2}} \mathbf{q}^{J-J^{\prime}-\frac{R}{2}}\right]
$$

- The fact that the index is computed by the localized path integral on a Hopf surface was anticipated by [Closset-Dumitrescu-Festuccia-Komargodski]

Supersymmetric Casimir energy

- The path integral + regularisation produced an extra pre-factor $\mathcal{F}(\mathbf{p}, \mathbf{q})$ explicitly given by

$$
\begin{aligned}
\mathcal{F}(\mathbf{p}, \mathbf{q})= & \frac{4 \pi}{3}\left(\left|\mathbf{b}_{1}\right|+\left|\mathbf{b}_{2}\right|-\frac{\left|\mathbf{b}_{1}\right|+\left|\mathbf{b}_{2}\right|}{\left|\mathbf{b}_{1}\right|\left|\mathbf{b}_{2}\right|}\right)(\mathbf{a}-\mathbf{c}) \\
& +\frac{4 \pi}{27} \frac{\left(\left|\mathbf{b}_{1}\right|+\left|\mathbf{b}_{2}\right|\right)^{3}}{\left|\mathbf{b}_{1}\right|\left|\mathbf{b}_{2}\right|}(3 \mathrm{c}-2 \mathbf{a})
\end{aligned}
$$

where

$$
\mathbf{a}=\frac{3}{32}\left(3 \operatorname{tr} \mathbf{R}^{3}-\operatorname{tr} \mathbf{R}\right), \quad \mathbf{c}=\frac{1}{32}\left(\mathbf{9} \operatorname{tr} \mathbf{R}^{3}-\mathbf{5} \operatorname{tr} \mathbf{R}\right)
$$

- Invariant depending only on complex structure and the trace anomaly coefficients a, c \rightarrow should not be merely a "counterterm", expect to encode physical/mathematical properties
- We argued that it is essentially the "vacuum energy" \rightarrow refer to as supersymmetric Casimir energy $\mathbf{E}_{\text {susy }}$

More comments on the supersymmetric Casimir energy

- How does one know the result does not depend on the regularisation procedure, e.g. zeta-function?
- One must show that there are no finite, supersymmetric, "counterterms" integrals of local densities
- Conjecture: there are no finite local counterterms (some exist, but vanish) [Assel-Cassani-DM] (unpublished)
- Supersymmetric Casimir energy can be recovered from the Hamiltonian formalism [Lorenzen-DM] (to appear)

$$
\langle 0| \mathrm{H}_{\mathrm{BPS}}|0\rangle=\mathrm{E}_{\text {susy }}
$$

where $\mathbf{H}_{\text {BPS }}$ is an appropriate supersymmetric Hamiltonian, such that $\left[H_{\text {BPS }}, Q_{\text {susy }}\right]=0$

Part II: Gauge/gravity duality

Constructing gravity duals

Idea: find a supersymmetric filling \mathbf{M}_{5} of a given $\mathbf{M}_{\mathbf{4}}$ in the context of $\mathbf{d}=\mathbf{5}$, gauged supergravity, and use the fact that any such solution uplifts to a supersymmetric solution $\mathbf{M}_{\mathbf{5}} \times \mathbf{Y}_{5}$ of Type IIB supergravity

Action*: $S=\frac{1}{16 \pi G} \int\left[d^{5} x \sqrt{g}\left(R-F^{2}+\frac{12}{\ell^{2}}\right)-\frac{8}{3 \sqrt{3}} A \wedge F \wedge F\right]$
KSE: $\left[\nabla_{\mu}+\frac{\mathrm{i}}{4 \sqrt{3}}\left(\gamma_{\mu}{ }^{\nu \lambda}-4 \delta_{\mu}^{\nu} \gamma^{\lambda}\right) \mathrm{F}_{\nu \lambda}-\frac{1}{2 \ell}\left(\gamma_{\mu}-2 \sqrt{3} \mathrm{i} \mathrm{A}_{\mu}\right)\right] \epsilon=0$
Dirichlet problem: find $\left(\mathbf{M}_{\mathbf{5}}, \mathbf{g}_{\mu \nu}, \mathbf{A}\right)$ such that

- The conformal boundary of $\mathbf{M}_{\mathbf{5}}$ is $\mathbf{M}_{\mathbf{4}}$
- The gauge field \mathbf{A} restricts to $\mathbf{A s}^{\text {cs }}=\mathbf{A}^{(4)}-\frac{3}{2} \mathbf{V}^{(4)}$
- The Killing spinor ϵ restricts to the Killing spinor χ

Check: The on-shell sugra action should reproduce the Casimir energy!
*From now on, \mathbf{A} will denote the five-dimensional gravi-photon field, while the four-dimensional background fields $\mathbf{A}^{(4)}, \mathbf{v}^{(4)}$ will not appear in the formulas

3d/4d gravity duals

- This can be repeated with " 4 d " replaced by " 3 d " and " 5 d " replaced by " 4 d " almost step by step: in fact, this is where we started from [J. Sparks' talk]
- Solutions constructed by: [DM,Passias,Sparks,Farquet,Lorenzen] and some variations by [Huang-Rey-Zhou;Nishioka]
- In $\mathbf{d}=\mathbf{3}$ field theories on $\mathbf{M}_{\mathbf{3}} \simeq \mathbf{S}^{\mathbf{3}}$, the large \mathbf{N} limit of the localized partition function matches exactly the $\mathbf{d}=4$ supergravity action, evaluated on a solution \rightarrow perfect cross-check of gauge/gravity and localization!
- This "sets the standard" for similar constructions in different dimensions

5d gravity duals

- Is there any known example of a 5d gravity solution whose conformal boundary is a Hermitian manifold?

5d gravity duals

- Is there any known example of a 5d gravity solution whose conformal boundary is a Hermitian manifold? Yes: Euclidean global AdS $_{5}$, with conformal boundary the round $\mathbf{S}^{1} \times \mathbf{S}^{\mathbf{3}}$

5d gravity duals

- Is there any known example of a 5d gravity solution whose conformal boundary is a Hermitian manifold? Yes: Euclidean global AdS $_{5}$, with conformal boundary the round $\mathbf{S}^{1} \times \mathbf{S}^{3}$
- Gravity dual of a generic Hermitian manifold is a very hard problem, e.g. no isometries. Moreover, no localization results (yet) so there is nothing to compare with
- Start investigating solutions whose conformal boundary \mathbf{M}_{4} is a more general Hopf surface, thus $\mathbf{M}_{4} \simeq \mathbf{S}^{1} \times \mathbf{S}^{3}$
- Useful technical simplification: $\mathbf{S U (2)} \times \mathbf{U}(\mathbf{1}) \times \mathbf{U}(\mathbf{1})$ symmetry \rightarrow ODE's \rightarrow singles out $\mathbf{S}^{1} \times \mathbf{S}_{\text {squashed }}^{3}$
- We looked for a supersymmetric "filling" $\mathbf{M}_{\mathbf{5}}$ of this boundary, in minimal gauged supergravity in $\mathbf{d}=\mathbf{5}$ [Cassani-DM]

Gutowski-Reall equation

Existence of one solution ϵ yields a canonical form of the metric and the gauge field [Gauntlett-Gutowski]. In the "time-like" class the metric reads

$$
\mathrm{ds}^{2}=-\mathrm{f}^{2}(\mathrm{dy}+\omega)^{2}+\mathrm{f}^{-1} \mathrm{ds}_{\mathrm{B}}^{2}
$$

where $\mathbf{d s}_{\mathbf{B}}^{2}$ is a Kähler metric and $\frac{\partial}{\partial y}$ is a time-like (in the bulk) Killing vector Further imposing an ansatz with $\mathbf{S U}(\mathbf{2}) \times \mathbf{U}(\mathbf{1}) \times \mathbf{U}(\mathbf{1})_{y}$ symmetry, with metric

$$
\mathrm{ds}_{\mathrm{B}}^{2}=\mathrm{d} \rho^{2}+\mathrm{a}^{2}\left(\hat{\sigma}_{1}^{2}+\hat{\sigma}_{2}^{2}\right)+\left(2 \mathrm{aa}^{\prime}\right)^{2} \hat{\sigma}_{3}^{2}
$$

relates all functions in the ansatz, e.g.

$$
f^{-1}=\frac{\ell^{2}}{12 a^{2} \mathbf{a}^{\prime}}\left[4\left(a^{\prime}\right)^{3}+7 a a^{\prime} a^{\prime \prime}-a^{\prime}+a^{2} a^{\prime \prime \prime}\right]
$$

reducing the susy conditions to one ODE for one function $\mathbf{a}(\rho)$. This is the ODE derived by [Gutowski-Reall], who also found a one-parameter family of black-hole solutions, i.e. with event horizon
We found a new one-parameter solution s.t. $[C M] \cap[G R]=\mathrm{AdS}_{5}$

The solution

Solve the ODE order by order by plugging a "UV" expansion ($\rho \rightarrow \infty$)

$$
a=a_{0} e^{\rho}\left[1+\left(a_{2}+c \rho\right) \frac{e^{-2 \rho}}{a_{0}^{2}}+\left(a_{4}+a_{4,1} \rho+a_{4,2} \rho^{2}\right) \frac{e^{-4 \rho}}{a_{0}^{4}}+\ldots\right]
$$

and an "IR" expansion ($\boldsymbol{\rho} \boldsymbol{\rightarrow}$)

$$
\mathrm{a}=\mathrm{a}_{0}^{\mathrm{IR}}+\mathrm{a}_{1}^{\mathrm{IR}} \rho+\mathrm{a}_{2}^{\mathrm{IR}} \rho^{2}+\mathrm{a}_{3}^{\mathrm{IR}} \rho^{3}+\ldots
$$

Require that in the UV the solution is AIAdS_{5} and in the IR it is smooth with no horizon. Globally $\mathbb{R}^{1,4}=\mathbb{R} \times \mathbb{R}^{4}$

UV: five free parameters $\mathbf{a}_{\mathbf{0}}, \mathbf{c}, \mathbf{a}_{2}, \mathbf{a}_{\mathbf{4}}, \mathbf{a}_{\mathbf{6}}$. IR: one free parameter $\boldsymbol{\xi}$. A solution interpolating between IR and UV is shown to exist
(1) analytically as a linearised (in $\boldsymbol{\xi}$) perturbation of AdS_{5}
(2) numerically for arbitrary values of the deformation parameter $\boldsymbol{\xi}$

Linearised solution

We obtain

$$
\mathbf{f}=1+\frac{2 \xi \log \cosh \rho}{\sinh ^{2} \rho}+\mathcal{O}\left(\xi^{2}\right)
$$

After the change of coordinate $\hat{\psi}=\psi-\frac{\mathbf{2}}{\mathbf{1 - 4 c}} \mathbf{t}, \mathbf{y}=\mathbf{t}$ the metric reads

$$
\mathrm{ds}^{2}=\mathrm{d} \rho^{2}-\cosh ^{2} \rho \mathrm{dt}^{2}+\frac{1}{4} \sinh ^{2} \rho\left(\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}\right)+[\operatorname{explicit} \mathcal{O}(\xi)]
$$

and the gauge field

$$
\mathrm{A}=\frac{1}{2 \sqrt{3}} \mathrm{dt}-\frac{\sqrt{3}}{4} \xi\left[1-\frac{2 \log \cosh \rho}{\sinh ^{2} \rho}\right] \sigma_{3}+\mathcal{O}\left(\xi^{2}\right)
$$

All the UV parameters are expressed in terms of the single IR parameter:

$$
\begin{gathered}
a_{0}=\frac{1}{4}+\frac{\xi}{16}(1-4 \log 2)+\mathcal{O}\left(\xi^{2}\right) \quad a_{2}=-\frac{1}{16}-\frac{3 \xi}{32}(1+4 \log 2)+\mathcal{O}\left(\xi^{2}\right) \\
a_{4}=\frac{3 \xi}{32}\left(\frac{3}{16}-\log 2\right)+\mathcal{O}\left(\xi^{2}\right) \quad a_{6}=\frac{\xi}{512}\left(\frac{113}{48}-7 \log 2\right)+\mathcal{O}\left(\xi^{2}\right) \\
c=\frac{3}{8} \xi+\mathcal{O}\left(\xi^{2}\right)
\end{gathered}
$$

Numerics

Figure: Different values of the IR parameter $\boldsymbol{\xi}$ are indicated on the curves.
Asymptotically, this shows the value of the parameter $\mathbf{v}^{2}=\mathbf{1 - 4 c}$, controlling the squashing of the boundary $\mathbf{S}_{\mathbf{v}}^{3}$

$$
\mathrm{ds}_{\mathrm{bdry}}^{2}=\left(2 \mathrm{a}_{0}\right)^{2}\left[-\frac{1}{\mathrm{v}^{2}} \mathrm{dt}^{2}+\frac{1}{4}\left(\sigma_{1}^{2}+\sigma_{2}^{2}+\mathrm{v}^{2} \sigma_{3}^{2}\right)\right]
$$

Relation between UV and IR parameters

Figure: The squashing v ranges between 0 and ∞ for $\mathbf{4 . 2} \gtrsim \boldsymbol{\xi} \gtrsim-\mathbf{0 . 7}$. The red line represents the relation obtained from the linearised analysis around the AdS_{5} solution at $\boldsymbol{\xi}=\mathbf{0}$

The renormalised on-shell action

- The holographically renormalised on-shell action is

$$
\mathbf{S}_{\mathrm{ren}}=\lim _{\rho \rightarrow \infty}\left(\mathrm{S}_{\mathrm{bulk}}+\mathrm{S}_{\mathrm{GH}}+\mathrm{S}_{\mathrm{ct}}\right)
$$

- The on-shell bulk action can be written as

$$
S_{\text {bulk }}=-\frac{1}{2 \pi G \ell^{2}} \int d^{5} \times \sqrt{g}-\frac{1}{12 \pi G} \int d\left(A \wedge *_{5} F\right)
$$

where the second term is a total derivative. In fact, also the first one is, so that the bulk on-shell action reduces to a boundary term

- Notice $\mathbf{S}_{\text {bulk }}$ depends on the gauge for \mathbf{A}. Under a gauge transformation $\delta \mathbf{A}=\delta \mathbf{A}_{\mathbf{t}} \mathrm{dt}$, where $\delta \mathrm{A}_{\mathbf{t}}$ is a constant, the on-shell action changes by

$$
\delta \mathrm{S}_{\mathrm{bulk}}=-\frac{\delta \mathrm{A}_{\mathrm{t}}}{12 \pi \mathrm{G}} \int \mathrm{dt} \int_{\mathrm{S}_{\mathrm{bdry}}^{3}} *_{5} \mathrm{~F}
$$

- In some previous formulas for \mathbf{A} we picked a specific gauge for \mathbf{A}

Euclidean on-shell action

- This gauge is such that $\mathcal{L}_{\frac{\partial}{\partial t}} \zeta=\mathcal{L}_{\frac{\partial}{\partial t}} \epsilon=\mathbf{0}$, therefore the spinors are \mathbf{t} independent. In any other gauge, the spinor acquires a phase $\sim \mathrm{e}^{\mathrm{i} \delta \mathrm{A}_{\mathrm{t}}}$
- In this gauge, we can do a simple analytic continuation $\mathbf{t} \rightarrow \mathbf{i t}$, to obtain a boundary Euclidean geometry with $\mathbf{S}^{1} \times \mathbf{S}^{3}$ topology
- The Euclidean boundary metric and gauge field are

$$
\begin{gathered}
\mathrm{ds}_{\mathrm{bdry}}^{2}=\frac{1}{\mathrm{v}^{2}} \mathrm{dt}^{2}+\frac{1}{4}\left(\sigma_{1}^{2}+\sigma_{2}^{2}+\mathrm{v}^{2} \sigma_{3}^{2}\right) \\
\frac{\sqrt{3}}{\ell} \mathrm{~A}_{\mathrm{bdry}}=\frac{\mathrm{i}}{2 \ell} \mathrm{dt}+\frac{1}{2}\left(\mathrm{v}^{2}-1\right) \sigma_{3}
\end{gathered}
$$

- Both the bulk metric and the bulk gauge field become complex. The analytically continued on-shell action remains real and reads

$$
\mathrm{I}=\frac{\pi \ell^{2} \Delta_{\mathrm{t}}}{\mathrm{G}}\left[\frac{2}{27 \mathrm{v}^{2}}+\frac{2}{27}-\frac{13}{108} \mathrm{v}^{2}+\frac{19}{288} \mathrm{v}^{4}\right]
$$

Holographic energy-momentum and R-current

- Computing the holographic energy-momentum tensor

$$
\mathrm{T}_{\mathrm{ij}}=-\frac{2}{\sqrt{h}} \frac{\delta \mathrm{~S}_{\mathrm{reg}}}{\delta h^{\mathrm{ij}}}
$$

the holographic trace anomaly vanishes $\left\langle\mathbf{T}_{\mathbf{i}}^{\mathbf{i}}\right\rangle=\mathbf{0}$, and there is no log divergence in \mathbf{I}, in agreement with [Cassani-DM]

- From the holographic R-symmetry current

$$
\mathrm{j}^{\mathrm{i}}=\frac{1}{\sqrt{\mathrm{~h}}} \frac{\delta \mathrm{~S}_{\mathrm{reg}}}{\delta \mathrm{~A}_{\mathrm{i}}}
$$

we can compute the associated holographic conserved charge (R-charge)

$$
\mathbf{Q}=\int_{\Sigma} \mathrm{d}^{3} \mathrm{x} \sqrt{\gamma} \mathbf{u}_{i}\left\langle\mathrm{j}^{\mathrm{i}}\right\rangle=\frac{1}{4 \pi \mathbf{G}} \int_{\Sigma}\left(*_{5} \mathbf{F}+\frac{4}{3 \sqrt{3}} \mathbf{A} \wedge \mathbf{F}\right)
$$

Partition function and supersymmetric index

- Master formula of the AdS/CFT correspondence:

$$
\mathrm{e}^{-\mathrm{S}_{\text {gravity }}\left[\mathrm{M}_{5}\right]}=\mathrm{Z}_{\mathrm{QFT}}\left[\mathrm{M}_{4}=\partial \mathrm{M}_{5}\right] \quad \text { for } \quad \mathrm{N} \rightarrow \infty
$$

- $\mathbf{M}_{\mathbf{5}} \simeq \mathbf{S}^{\mathbf{1}} \times \mathbb{R}^{4} \Rightarrow$ path integral on $\mathbf{M}_{4} \simeq \mathbf{S}^{\mathbf{1}} \times \mathbf{S}^{\mathbf{3}}$ with periodic boundary conditions for the fermions on $\mathbf{S}^{\mathbf{1}}$, is precisely the supersymmetric partition function on $\mathbf{M}_{4}=\mathcal{H}_{\mathrm{p}, \mathrm{q}} \simeq \mathbf{S}^{\mathbf{3}}$

$$
\mathrm{Z}\left[\mathcal{H}_{\mathrm{p}, \mathrm{q}}\right]=\mathrm{e}^{-\mathcal{F}(\mathrm{p}, \mathrm{q})} \mathcal{I}(\mathrm{p}, \mathbf{q})
$$

where $\mathcal{I}(\mathbf{p}, \mathbf{q})$ is the supersymmetric index with \mathbf{p}, \mathbf{q} fugacities

- The (supersymmetric) Casimir energy may be defined as ($\beta \sim \log \mathrm{p} \sim \log \mathrm{q}$)

$$
\mathrm{E}_{\text {susy }} \equiv-\lim _{\beta \rightarrow \infty} \frac{\mathrm{d}}{\mathrm{~d} \beta} \log \mathrm{Z}_{\mathrm{QFT}}\left[\mathrm{~S}_{\beta}^{1} \times \mathrm{M}_{3}\right]
$$

- Using known facts that $\mathbf{S}_{\text {gravity }}=\boldsymbol{O}\left(\mathbf{N}^{\mathbf{2}}\right)$ and in large \mathbf{N} limit $\mathcal{I}=\mathcal{O}\left(\mathbf{N}^{0}\right)$, we see the entire contribution comes from $\mathcal{F}(\mathbf{p}, \mathbf{q})$!

Supersymmetric Casimir energy

- Our $\mathbf{M}_{\mathbf{4}}$ turns out to be a Hopf surface with parameters

$$
\mathrm{p}=\mathbf{q}=\mathrm{e}^{-\frac{\Delta_{\mathrm{t}}}{\ell \mathrm{v}^{2}}} \equiv \mathrm{e}^{-\beta}
$$

so although the metric is a non-trivial deformation of the round case, the complex structure is essentially the standard one

- Inserting these values in our general formula for the pre-factor we obtain

$$
-\mathcal{F}=\frac{4}{27} \beta(a+3 c)
$$

- For a superconformal quiver with gravity dual $\left(\mathbf{a}=\mathbf{c}=\mathcal{O}\left(\mathbf{N}^{2}\right)\right)$ we can compare $\mathbf{E}_{\text {susy }}$ with the gravity side using standard formula relating the coefficient $\mathbf{a}=\mathbf{c}$ to the 5 d Newton constant

$$
E_{\text {susy }}=\frac{16}{27} a=\frac{2}{27} \frac{\pi \ell^{3}}{G} \quad \text { for } \quad N \rightarrow \infty
$$

Comparison with gravity

Fact: we have computed the holographically renormalised on-shell action (in the gauge where $\mathcal{L}_{\frac{\partial}{\partial t}} \epsilon=0$), as a function of the squashing parameter

$$
\mathrm{I}=\frac{\Delta_{\mathrm{t}}}{\ell \mathbf{v}^{2}} \frac{\pi \ell^{3}}{G}\left[\frac{2}{27}+\frac{2}{27} v^{2}-\frac{13}{108} \mathbf{v}^{4}+\frac{19}{288} v^{6}\right]
$$

Fact: in the limit $v^{2}=1$ this reduces to $\frac{1}{\Delta_{\mathrm{t}}}=\frac{3}{32} \frac{\pi \ell^{2}}{\mathrm{G}}$, which [Balasubramanian-Kraus] interpreted as the "Casimir energy on $\mathbf{S}^{\mathbf{3}}$ "

We would like to interpret the first red term in I as the relevant Casimir energy, to be compared with the field theory result

The $\mathbf{v}^{2}=1$ limit of this gives $\frac{2}{27} \frac{\pi \ell^{2}}{G}$. However, the Casimir energy to which [Balasubramanian-Kraus] refer is $\langle\mathbf{0}| \mathbf{H}|\mathbf{0}\rangle$ of a Hamltonian different form $\mathbf{H}_{\mathbf{B P s}}$!

Presumably there are new finite holographic counterterms that must be included to render the full bulk+boundary sugra action supersymmetric. The following is just an example of how it might work...

Finite counterterms and ambiguities

- In $\mathbf{d}=\mathbf{5}$ holographic renormalisation does not determine unambiguously all the counterterms necessary to render the on-shell sugra action finite
- There are four independent types of standard counterterms, which are finite on removing the UV cut-off (because scale-invariant)

$$
\begin{gathered}
\Delta \mathrm{S}=\frac{\ell^{3}}{8 \pi \mathrm{G}} \int_{\partial \mathrm{M}} \mathrm{~d}^{4} \mathrm{x} \sqrt{\mathrm{~h}}\left(\alpha \mathcal{E}+\beta \mathrm{C}_{\mathrm{ijkl}} \mathrm{C}^{\mathrm{ijkl}}+\gamma \mathrm{R}^{2}-\frac{\delta}{\ell^{2}} \mathrm{~F}_{\mathrm{ij}} \mathrm{~F}^{\mathrm{ij}}\right) \\
\propto \frac{\gamma}{4}\left(4-\mathrm{v}^{2}\right)^{2}+\frac{1}{6}(8 \beta-\delta)\left(1-\mathrm{v}^{2}\right)^{2}
\end{gathered}
$$

- Has the correct polynomial dependence on \mathbf{v}^{2} to remove the unwanted terms in I. But there isn't a choice of $\gamma, \boldsymbol{\beta}, \boldsymbol{\delta}$ removing all terms simultaneously
- An independent term can be constructed using the complex structure: with the Ricci form of boundary geometry $\mathcal{R}_{\mathrm{ij}}=\frac{1}{2} \mathrm{R}_{\mathrm{ijk}} \mathcal{J}^{\mathbf{k l}}$ we obtain

$$
\mathrm{I}-\frac{1}{108} \frac{\ell^{3}}{8 \pi G} \int_{\partial M} \mathrm{~d}^{4} \times \sqrt{\mathrm{h}}\left(\frac{7}{24} \mathrm{R}^{2}+\frac{17}{\ell^{2}} \mathrm{~F}_{\mathrm{ij}} \mathrm{~F}^{\mathrm{ij}}-\mathcal{R}_{\mathrm{ij}} \mathcal{R}^{\mathrm{ij}}\right)=\frac{2}{27} \frac{\Delta_{\mathrm{t}}}{\ell \mathrm{v}^{2}} \frac{\pi \ell^{3}}{\mathrm{G}}
$$

Outlook

- Computed partition function on general four-dimensional Hopf surfaces \rightarrow supersymmetric index + Casimir energy
- Five-dimensional gravity duals harder to construct explicitly then four-dimensional ones - we have obtained one non-trivial example
- Explore the role of the supersymmetric Casimir energy both in the field theory and in the gauge/gravity duality \rightarrow reconcile with holographic renormalization
- Challenge: compute partition function of $\boldsymbol{\mathcal { N }}=\mathbf{1}$ field theories on compact Hermitian manifolds (e.g. Kähler) \rightarrow instantons, vortices, holomorphic invariants...

