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Gauge/Gravity duality

Equivalence between (quantum) gravity in bulk space-times and quantum
field theories on their boundaries

cartoon of
AdS space

CFT lives on the
boundary of AdS

  

Strongly coupled

GravityQFT

 AdS/CFT

Weakly coupled
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Localization

For certain supersymmetric field theories defined on compact curved
Riemannian manifolds the path integral may be computed exactly

Localization: functional integral over all fields of a theory→
integral/sum over a reduced set of field configurations

Saddle point around a supersymmetric locus gives the exact answer

A priori the path integral (“partition function” Z) depends on the
parameters of the theory and of the background geometry
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Supersymmetry

When bulk and boundary are supersymmetric we can perform detailed
computations on both sides and (in certain limits) compare them

Supersymmetry in the bulk⇒ supersymmetric solutions of
supergravity equations

Supersymmetry on the boundary⇒ “rigid” curved
space supersymmetry
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Part I: Supersymmetric localization
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Prequel: localization on the round three-sphere

Supersymmetric localization attributed to [Pestun]: N = 2 four-dimensional
QFT on round S4 → followed by results in three dimensions [J. Sparks’ talk]

Any d = 3, N = 2 gauge theory on the round S3, preserves supersymmetry
[Kapustin-Willet-Yaakov], [Jafferis], [Hama-Hosomichi-Lee]. Key ingredient:
on the (unit-radius) round S3 there exist Killing spinors χ

∇iχ = i
2
γiχ

Full path integral→ matrix integral with integrand a super-determinant where
“most”, but not all eigenvalues cancel out:

det Dferm

det Dbos

=

∏
ferm eigenvalues∏
bos eigenvalues

=

∏
unpaired ferm eigenvalues∏
unpaired bos eigenvalues
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Four dimensional N = 1 supersymmetric field theories

Main character: d = 4 supersymmetric gauge theories with “matter”

Supersymmetry organises the fields in multiplets, containing fields with
different spin

Vector multiplet: gauge field A (connection on a bundle); Weyl spinor λ;
“auxiliary” scalar D (sort of Lagrange multiplier), all transforming in the
adjoint representation of a group G

Chiral multiplet (the “matter”): complex scalar φ; Weyl spinor ψ;
“auxiliary” scalar F, all transforming in a representation R of the group G

In flat space with Lorentzian signature, supersymmetric Lagrangians
containing these fields are text-book material (Euclidean space has some
extra caveats)
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Four dimensional N = 1 supersymmetric field theories

For example, defining Dµ = ∂µ − iAµ·, where · denotes action on the
appropriate representation, we have

L = (Dµφ)†Dµφ + iψ†σµDµψ + . . .

Somewhat strangely, rigid supersymmetry in curved space (Euclidean or
Lorentzian) addressed systematically only in the 2010’s

But local supersymmetry studied since long time ago→ supergravity

[Festuccia-Seiberg]: take supergravity with some gauge and matter fields
and appropriately throw away gravity→ “rigid limit”. Simple but correct

Important: in the process of throwing away gravity, some extra fields of the
supergravity multiplet remain, but are non-dynamical→ background fields
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Rigid supersymmetric four-manifolds

Rigid limit of “new minimal” supergravity→ Killing spinor equation for
d = 4, N = 1 gauge theories on curved space

(∇µ − iAµ) ζ + iVµζ + iVνσµνζ = 0

The Aµ,Vµ are background fields and ζ is a supersymmetry parameter

In Euclidean signature: equivalent to Hermitian metric
[Klare-Tomasiello-Zaffaroni], [Dumitrescu-Festuccia-Seiberg]

In Lorentzian signature: equivalent to null conformal Killing vector
[Cassani-Klare-DM-Tomasiello-Zaffaroni]

Main motivation: localization in four dimensional N = 1 gauge theories→
[Assel-Cassani-DM]
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Localization on four-manifolds: strategy outline

Work in Euclidean signature and start with generic background fields Aµ,
Vµ associated to a Hermitian manifold

Construct “susy-exact” Lagrangians for the vector and chiral multiplets→
set-up localization on a general Hermitian manifold

Restrict to backgrounds admitting a second spinor ζ̃ with opposite R-charge
→ show that is possible to pick a real A

Further restrict to manifolds with topology M4 ' S1 × S3

Prove that the localization locus is given by gauge field Aτ = constant,
with all other fields (λ,D;φ, ψ, F) vanishing

Partition function reduces to a matrix integral over the Kaluza-Klein
(Fourier) modes of Aτ on S1 → integrand is infinite product of 3d
super-determinants→ use the 3d results! [J. Sparks’ talk]
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Localizing Lagrangians and saddle point equations

The bosonic parts of the localizing terms constructed with ζ are

L(+)
vector = tr

(
1

4
F (+)
µν F

(+)µν −
1

4
D2

)
Lchiral = (gµν − iJµν) Dµφ̃Dνφ + F̃F

Where Dµ = ∇µ − iqRAµ − iAµ·

In Euclidean signatures all fields are doubled, and to evaluate the path
integral one needs to impose reality conditions

With the obvious ones, A,D Hermitian, φ̃ = φ†, F̃ = F†, we obtain the
saddle point equations

vector : F (+)
µν = 0 , D = 0

chiral : JµνDνφ̃ = iDµφ̃ , F = 0
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Aside: localization on general Hermitian manifolds

The saddle-point condition of the vector multiplet is the instanton equation
on M4. I don’t have to explain this equation at this workshop!

Z =
∑

charge n inst.

∫
inst. moduli space

[inst. measure] Zclassic Z1−loop

Instantons on Hermitian manifolds (HYM)→ hard problem (?)

The saddle-point condition of the chiral multiplet can be rewritten as
∂̄Dφ = 0→ holomorphic sections of instanton bundle (+ further twist)

Curiously, it is possible to deform the instanton equation to obtain the
“vortex” equations [Bradlow], [Garciá-Prada]

JµνFµν = φ†φ + τ , ΩµνFµν = 0

∂̄Dφ = 0

Exploited in physics to perform an alternative localization in some cases
(“Higgs branch” localization), [Benini-Cremonesi,...]

Dario Martelli (KCL) 12 August 2014 13 / 37



Geometries with two supercharges of opposite R-charge

Assume that there exist a second spinor ζ̃, with opposite chirality, obeying
the rigid new minimal equation

(∇µ + iAµ) ζ̃ − iVµζ̃ − iVνσ̃µν ζ̃ = 0

Geometry is a special case of ambihermitian manifold, which may be neatly
characterised by the complex holomorphic Killing vector field Kµ = ζσµζ̃

The metric takes a canonical form in terms of complex coordinates z,w

ds2 = Ω2[(dw + hdz)(dw̄ + h̄dz̄) + c2dzdz̄]

with Ω(z, z̄), c(z, z̄), h(z, z̄) arbitrary functions

Dario Martelli (KCL) 12 August 2014 14 / 37



Choice of real A

The background fields take the form

V = dc logΩ +
2

Ω2c2
Im (∂z̄h K) + κK

A =
1

2
dc log

(
Ω3c

)
+

1

2
dω +

(
3

2
κ−

i

Ω2c2
∂z̄h

)
K

ω is a phase entering in the Killing spinors, that can be fixed requiring A to
be globally well-defined

κ is an arbitrary function a priori, that drops out from the rigid
supersymmetry equations→ refer to as “κ-gauge”

We fix κ so that the last term in A vanishes and therefore A is real
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“Toric” Hopf surfaces

A Hopf surface is essentially a four-dimensional complex manifold with the
topology of S1 × S3, and it may be defined as a compact complex surface
whose universal covering is C2 − (0, 0)

Described as quotient of C2 − (0, 0), with coordinates z1, z2 identified as

(z1, z2) ∼ (pz1, qz2)

where p, q are in general two complex parameters

We show that on a Hopf surface we can take a very general metric

ds2 = Ω2dτ 2 + f2dρ2 + mIJdϕIdϕJ I, J = 1, 2

while preserving two spinors ζ and ζ̃

τ is a coordinate on S1, while the 3d part has coordinates ρ, ϕ1, ϕ2,
describing S3 as a T2 fibration over an interval→ “toric”
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The matrix model

The localizing locus simplifies drastically, due to “doubling the equations
imposed”, e,g. → F+ = F− = 0→ full contribution comes from
zero-instanton sector! Flat connections Aτ = constant, and all other fields
vanishing

The localized path integral is reduced to exactly the same 3d computation
done in [Alday-DM-Richmond-Sparks] (with no CS terms). More precisely,
to an infinite product of that, one for each KK supermultiplet mode

The Hopf surface complex structure data p, q maps to the almost contact
structure data b1, b2 as: p = e−2π|b1|, q = e−2π|b2|

Infinite products regularised using fancy mathematical formulas. E.g.

Zchiral
1-loop =

∏
ρ∈∆R

∏
n∈Z

Zchiral
1-loop (3d)

[
σ

(n,ρ)
0

]
→ eiπΨ

(0)
chi eiπΨ

(1)
chi

∏
ρ∈∆R

Γe

(
e2πiρA0 (pq)

r
2 , p, q

)
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Supersymmetric index

The prefactor Ψ
(1)
chi is anomalous and must cancel after combining with the

vector multiplet contribution→ anomaly cancellation conditions “for free”

The rest combines into the following formula

Z[Hp,q] = e−F(p,q) I(p, q)

where I(p, q) is the supersymmetric index with p, q fugacities

I(p, q) =
(p; p)rG (q; q)rG

|W|

∫
TrG

dz

2πiz

∏
α∈∆+

θ
(

zα, p
)
θ
(

z−α, q
)∏

J

∏
ρ∈∆J

Γe
(

zρ(pq)
rJ
2 , p, q

)

which may be defined as a sum over states as

I(p, q) = Tr[(−1)FpJ+J′− R
2 qJ−J′− R

2 ]

The fact that the index is computed by the localized path integral on a Hopf
surface was anticipated by [Closset-Dumitrescu-Festuccia-Komargodski]
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Supersymmetric Casimir energy

The path integral + regularisation produced an extra pre-factor F(p, q)
explicitly given by

F(p, q) =
4π

3

(
|b1|+ |b2| −

|b1|+ |b2|
|b1||b2|

)
(a− c)

+
4π

27

(|b1|+ |b2|)3

|b1||b2|
(3 c− 2 a)

where

a =
3

32

(
3 trR3 − trR

)
, c =

1

32

(
9 trR3 − 5 trR

)
Invariant depending only on complex structure and the trace anomaly
coefficients a, c→ should not be merely a “counterterm”, expect to encode
physical/mathematical properties

We argued that it is essentially the “vacuum energy”→ refer to as
supersymmetric Casimir energy Esusy
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More comments on the supersymmetric Casimir energy

How does one know the result does not depend on the regularisation
procedure, e.g. zeta-function?

One must show that there are no finite, supersymmetric, “counterterms” –
integrals of local densities

Conjecture: there are no finite local counterterms (some exist, but vanish)
[Assel-Cassani-DM] (unpublished)

Supersymmetric Casimir energy can be recovered from the Hamiltonian
formalism [Lorenzen-DM] (to appear)

〈0|HBPS|0〉 = Esusy

where HBPS is an appropriate supersymmetric Hamiltonian, such that
[HBPS,Qsusy] = 0

Dario Martelli (KCL) 12 August 2014 20 / 37



Part II: Gauge/gravity duality
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Constructing gravity duals
Idea: find a supersymmetric filling M5 of a given M4 in the context of d = 5,
gauged supergravity, and use the fact that any such solution uplifts to a
supersymmetric solution M5 × Y5 of Type IIB supergravity

Action∗: S =
1

16πG

∫ [
d5x
√

g

(
R− F2 +

12

`2

)
−

8

3
√

3
A ∧ F ∧ F

]

KSE:

[
∇µ +

i

4
√

3

(
γµ
νλ − 4δνµγ

λ
)

Fνλ −
1

2`

(
γµ − 2

√
3 iAµ

)]
ε = 0

Dirichlet problem: find (M5, gµν ,A) such that

The conformal boundary of M5 is M4

The gauge field A restricts to Acs = A(4) − 3
2
V(4)

The Killing spinor ε restricts to the Killing spinor χ

Check: The on-shell sugra action should reproduce the Casimir energy!

∗From now on, A will denote the five-dimensional gravi-photon field, while the four-dimensional background fields A(4) , V(4)

will not appear in the formulas
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3d/4d gravity duals

This can be repeated with “4d” replaced by “3d” and “5d” replaced by “4d”
almost step by step: in fact, this is where we started from [J. Sparks’ talk]

Solutions constructed by: [DM,Passias,Sparks,Farquet,Lorenzen] and some
variations by [Huang-Rey-Zhou;Nishioka]

In d = 3 field theories on M3 ' S3, the large N limit of the localized
partition function matches exactly the d = 4 supergravity action, evaluated
on a solution→ perfect cross-check of gauge/gravity and localization!

This “sets the standard” for similar constructions in different dimensions
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5d gravity duals

Is there any known example of a 5d gravity solution whose conformal
boundary is a Hermitian manifold?

Yes: Euclidean global AdS5, with
conformal boundary the round S1 × S3

Gravity dual of a generic Hermitian manifold is a very hard problem, e.g. no
isometries. Moreover, no localization results (yet) so there is nothing to
compare with

Start investigating solutions whose conformal boundary M4 is a more
general Hopf surface, thus M4 ' S1 × S3

Useful technical simplification: SU(2)× U(1)× U(1) symmetry→ ODE’s
→ singles out S1 × S3

squashed

We looked for a supersymmetric “filling” M5 of this boundary, in minimal
gauged supergravity in d = 5 [Cassani-DM]
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Gutowski-Reall equation

Existence of one solution ε yields a canonical form of the metric and the gauge
field [Gauntlett-Gutowski]. In the “time-like” class the metric reads

ds2 = −f2(dy + ω)2 + f−1ds2
B

where ds2
B is a Kähler metric and ∂

∂y
is a time-like (in the bulk) Killing vector

Further imposing an ansatz with SU(2)× U(1)× U(1)y symmetry, with metric

ds2
B = dρ2 + a2(σ̂2

1 + σ̂2
2) + (2aa′)2σ̂2

3

relates all functions in the ansatz, e.g.

f−1 =
`2

12a2a′
[4(a′)3 + 7a a′a′′ − a′ + a2a′′′]

reducing the susy conditions to one ODE for one function a(ρ). This is the ODE
derived by [Gutowski-Reall], who also found a one-parameter family of black-hole
solutions, i.e. with event horizon

We found a new one-parameter solution s.t. [CM] ∩ [GR] = AdS5
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The solution

Solve the ODE order by order by plugging a “UV” expansion (ρ→∞)

a = a0eρ

[
1 + (a2 + cρ)

e−2ρ

a2
0

+
(
a4 + a4,1ρ + a4,2ρ

2
) e−4ρ

a4
0

+ . . .

]

and an “IR” expansion (ρ→ 0)

a = aIR
0 + aIR

1 ρ + aIR
2 ρ2 + aIR

3 ρ3 + . . .

Require that in the UV the solution is AlAdS5 and in the IR it is smooth with no
horizon. Globally R1,4 = R× R4

UV: five free parameters a0, c, a2, a4, a6. IR: one free parameter ξ. A solution
interpolating between IR and UV is shown to exist

1 analytically as a linearised (in ξ) perturbation of AdS5

2 numerically for arbitrary values of the deformation parameter ξ
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Linearised solution

We obtain

f = 1 +
2ξ log cosh ρ

sinh2 ρ
+O(ξ2)

After the change of coordinate ψ̂ = ψ −
2

1− 4c
t, y = t the metric reads

ds2 = dρ2 − cosh2ρdt2 +
1

4
sinh2ρ

(
σ2

1 + σ2
2 + σ2

3

)
+ [explicit O(ξ)]

and the gauge field

A =
1

2
√

3
dt−

√
3

4
ξ

[
1−

2 log cosh ρ

sinh2 ρ

]
σ3 + O(ξ2)

All the UV parameters are expressed in terms of the single IR parameter:

a0 =
1

4
+
ξ

16
(1− 4 log 2) +O(ξ2) a2 = −

1

16
−

3 ξ

32
(1 + 4 log 2) +O(ξ2)

a4 =
3 ξ

32

(
3

16
− log 2

)
+O(ξ2) a6 =

ξ

512

(
113

48
− 7 log 2

)
+O(ξ2)

c =
3

8
ξ +O(ξ2)
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Numerics
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Figure: Different values of the IR parameter ξ are indicated on the curves.
Asymptotically, this shows the value of the parameter v2 = 1− 4c, controlling
the squashing of the boundary S3

v

ds2
bdry = (2a0)2

[
−

1

v2
dt2 +

1

4

(
σ 2

1 + σ 2
2 + v2σ 2

3

)]
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Relation between UV and IR parameters
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Figure: The squashing v ranges between 0 and∞ for 4.2 & ξ & −0.7. The red
line represents the relation obtained from the linearised analysis around the AdS5

solution at ξ = 0
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The renormalised on-shell action

The holographically renormalised on-shell action is

Sren = lim
ρ→∞

(Sbulk + SGH + Sct)

The on-shell bulk action can be written as

Sbulk = −
1

2πG`2

∫
d5x
√

g −
1

12πG

∫
d(A ∧ ∗5F)

where the second term is a total derivative. In fact, also the first one is, so
that the bulk on-shell action reduces to a boundary term

Notice Sbulk depends on the gauge for A. Under a gauge transformation
δA = δAt dt, where δAt is a constant, the on-shell action changes by

δSbulk = −
δAt

12πG

∫
dt

∫
S3
bdry

∗5F

In some previous formulas for A we picked a specific gauge for A
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Euclidean on-shell action

This gauge is such that L ∂
∂t
ζ = L ∂

∂t
ε = 0, therefore the spinors are t

independent. In any other gauge, the spinor acquires a phase ∼ eiδAtt

In this gauge, we can do a simple analytic continuation t→ it, to obtain a
boundary Euclidean geometry with S1 × S3 topology

The Euclidean boundary metric and gauge field are

ds2
bdry =

1

v2
dt2 +

1

4

(
σ 2

1 + σ 2
2 + v2σ 2

3

)
√

3

`
Abdry =

i

2`
dt +

1

2
(v2 − 1)σ3

Both the bulk metric and the bulk gauge field become complex. The
analytically continued on-shell action remains real and reads

I =
π`2∆t

G

[
2

27v2
+

2

27
−

13

108
v2 +

19

288
v4

]
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Holographic energy-momentum and R-current

Computing the holographic energy-momentum tensor

Tij = −
2
√

h

δSreg

δhij

the holographic trace anomaly vanishes 〈Ti
i〉 = 0, and there is no log

divergence in I, in agreement with [Cassani-DM]

From the holographic R-symmetry current

ji =
1
√

h

δSreg

δAi

we can compute the associated holographic conserved charge (R-charge)

Q =

∫
Σ

d3x
√
γ ui〈ji〉 =

1

4πG

∫
Σ

(
∗5F +

4

3
√

3
A ∧ F

)
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Partition function and supersymmetric index

Master formula of the AdS/CFT correspondence:

e−Sgravity[M5] = ZQFT[M4 = ∂M5] for N→∞

M5 ' S1 × R4 ⇒ path integral on M4 ' S1 × S3 with periodic boundary
conditions for the fermions on S1, is precisely the supersymmetric partition
function on M4 = Hp,q ' S3

Z[Hp,q] = e−F(p,q) I(p, q)

where I(p, q) is the supersymmetric index with p, q fugacities

The (supersymmetric) Casimir energy may be defined as
(β ∼ log p ∼ log q)

Esusy ≡ − lim
β→∞

d

dβ
log ZQFT[S1

β ×M3]

Using known facts that Sgravity = O(N2) and in large N limit
I = O(N0), we see the entire contribution comes from F(p, q)!
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Supersymmetric Casimir energy

Our M4 turns out to be a Hopf surface with parameters

p = q = e−
∆t

`v2 ≡ e−β

so although the metric is a non-trivial deformation of the round case, the
complex structure is essentially the standard one

Inserting these values in our general formula for the pre-factor we obtain

−F =
4

27
β (a + 3 c)

For a superconformal quiver with gravity dual (a = c = O(N2)) we can
compare Esusy with the gravity side using standard formula relating the
coefficient a = c to the 5d Newton constant

Esusy =
16

27
a =

2

27

π`3

G
for N→∞

Dario Martelli (KCL) 12 August 2014 34 / 37



Comparison with gravity

Fact: we have computed the holographically renormalised on-shell action (in the
gauge where L ∂

∂t
ε = 0), as a function of the squashing parameter

I =
∆t

`v2

π`3

G

[
2

27
+

2

27
v2 −

13

108
v4 +

19

288
v6

]

Fact: in the limit v2 = 1 this reduces to I
∆t

= 3
32
π`2

G
, which

[Balasubramanian-Kraus] interpreted as the “Casimir energy on S3”

We would like to interpret the first red term in I as the relevant Casimir energy,
to be compared with the field theory result

The v2 = 1 limit of this gives 2
27
π`2

G
. However, the Casimir energy to which

[Balasubramanian-Kraus] refer is 〈0|H|0〉 of a Hamltonian different form HBPS!

Presumably there are new finite holographic counterterms that must be included
to render the full bulk+boundary sugra action supersymmetric. The following is
just an example of how it might work...
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Finite counterterms and ambiguities

In d = 5 holographic renormalisation does not determine unambiguously all
the counterterms necessary to render the on-shell sugra action finite

There are four independent types of standard counterterms, which are finite
on removing the UV cut-off (because scale-invariant)

∆S =
`3

8πG

∫
∂M

d4x
√

h

(
α E + β CijklC

ijkl + γ R2 −
δ

`2
FijF

ij

)
∝
γ

4

(
4− v2

)2
+

1

6
(8β − δ)

(
1− v2

)2

Has the correct polynomial dependence on v2 to remove the unwanted terms
in I. But there isn’t a choice of γ, β, δ removing all terms simultaneously

An independent term can be constructed using the complex structure: with
the Ricci form of boundary geometry Rij = 1
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Outlook

Computed partition function on general four-dimensional Hopf surfaces→
supersymmetric index + Casimir energy

Five-dimensional gravity duals harder to construct explicitly then
four-dimensional ones – we have obtained one non-trivial example

Explore the role of the supersymmetric Casimir energy both in the field
theory and in the gauge/gravity duality→ reconcile with holographic
renormalization

Challenge: compute partition function of N = 1 field theories on compact
Hermitian manifolds (e.g. Kähler)→ instantons, vortices, holomorphic
invariants...
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