Instantons on the manifolds of Bryant and Salamon

Andrew Clarke

Federal University of Rio de Janeiro

August 12, 2014

Overview

(1) The group G_{2}
(2) The Bryant-Salamon examples
(3) Construction of G_{2}-instantons on the Bryant-Salamon manifold
(4) Asymptotic behaviour of the instantons
(5) Rapid discussion of $\operatorname{Spin}(7)$ case

Holonomy and the group G_{2}

- The classification of riemannian holonomy groups was done by Berger (1955). One of the possibilities is the group G_{2}.

Holonomy and the group G_{2}

- The classification of riemannian holonomy groups was done by Berger (1955). One of the possibilities is the group G_{2}.
- Irreducible examples only exist on 7-manifolds.

Holonomy and the group G_{2}

- The classification of riemannian holonomy groups was done by Berger (1955). One of the possibilities is the group G_{2}.
- Irreducible examples only exist on 7-manifolds.
- What is the group G_{2} ?

Holonomy and the group G_{2}

- The classification of riemannian holonomy groups was done by Berger (1955). One of the possibilities is the group G_{2}.
- Irreducible examples only exist on 7-manifolds.
- What is the group G_{2} ?

$$
\text { Recall: } \begin{aligned}
\mathbb{O} & =\text { octonians } \\
& =8 \text {-dim. non-assoc. algebra with } 1 \\
& \sim \mathbb{H}+\mathbb{H} \varepsilon .
\end{aligned}
$$

The group G_{2}

Definition

$$
\begin{aligned}
G_{2} & =\operatorname{Aut}(\mathbb{O}) \\
& =\{g \in G L(8, \mathbb{R}) ; g(x y)=g(x) g(y), \forall x, y \in \mathbb{O}\} .
\end{aligned}
$$

The group G_{2}

Definition

$$
\begin{aligned}
G_{2} & =\operatorname{Aut}(\mathbb{O}) \\
& =\{g \in G L(8, \mathbb{R}) ; g(x y)=g(x) g(y), \forall x, y \in \mathbb{O}\} .
\end{aligned}
$$

- G_{2} preserves 1 , so preserves complement $\langle 1\rangle^{\perp} \sim \mathbb{R}^{7}$.

The group G_{2}

Definition

$$
\begin{aligned}
G_{2} & =\operatorname{Aut}(\mathbb{O}) \\
& =\{g \in G L(8, \mathbb{R}) ; g(x y)=g(x) g(y), \forall x, y \in \mathbb{O}\} .
\end{aligned}
$$

- G_{2} preserves 1 , so preserves complement $\langle 1\rangle^{\perp} \sim \mathbb{R}^{7}$.
- There exists non-degenerate 3-form $\phi \in \Lambda^{3} \mathbb{R}^{7}$ such that

$$
G_{2}=\left\{g \in G L(7, \mathbb{R}) ; g^{*} \phi=\phi\right\}
$$

The group G_{2}

Definition

$$
\begin{aligned}
G_{2} & =\operatorname{Aut}(\mathbb{O}) \\
& =\{g \in G L(8, \mathbb{R}) ; g(x y)=g(x) g(y), \forall x, y \in \mathbb{O}\}
\end{aligned}
$$

- G_{2} preserves 1 , so preserves complement $\langle 1\rangle^{\perp} \sim \mathbb{R}^{7}$.
- There exists non-degenerate 3-form $\phi \in \Lambda^{3} \mathbb{R}^{7}$ such that

$$
\begin{aligned}
G_{2}= & \left\{g \in G L(7, \mathbb{R}) ; g^{*} \phi=\phi\right\} \\
\phi= & d x^{123}+d x^{1} \wedge\left(d x^{45}-d x^{67}\right) \\
& +d x^{2} \wedge\left(d x^{46}-d x^{75}\right)+d x^{3} \wedge\left(d x^{47}-d x^{56}\right)
\end{aligned}
$$

The group G_{2}

Definition

$$
\begin{aligned}
G_{2} & =\operatorname{Aut}(\mathbb{O}) \\
& =\{g \in G L(8, \mathbb{R}) ; g(x y)=g(x) g(y), \forall x, y \in \mathbb{O}\}
\end{aligned}
$$

- G_{2} preserves 1 , so preserves complement $\langle 1\rangle^{\perp} \sim \mathbb{R}^{7}$.
- There exists non-degenerate 3-form $\phi \in \Lambda^{3} \mathbb{R}^{7}$ such that

$$
\begin{aligned}
G_{2}= & \left\{g \in G L(7, \mathbb{R}) ; g^{*} \phi=\phi\right\} \\
\phi= & d x^{123}+d x^{1} \wedge\left(d x^{45}-d x^{67}\right) \\
& +d x^{2} \wedge\left(d x^{46}-d x^{75}\right)+d x^{3} \wedge\left(d x^{47}-d x^{56}\right)
\end{aligned}
$$

- By wedge product and contraction, the form ϕ algebraically determines the euclidean metric on \mathbb{R}^{7}.

The group G_{2}

For $\left(M^{7}, g, \nabla\right)$ riemannian, $\exists \varphi \in \Omega^{3}(M)$ pointwise isomorphic to ϕ, s.t. $\nabla \varphi=0 \Leftrightarrow \mathrm{Hol}(g) \subseteq G_{2}$.

The group G_{2}

For $\left(M^{7}, g, \nabla\right)$ riemannian, $\exists \varphi \in \Omega^{3}(M)$ pointwise isomorphic to ϕ, s.t. $\nabla \varphi=0 \Leftrightarrow \operatorname{Hol}(g) \subseteq G_{2}$.

Suppose $\varphi \in \Omega^{3}(M)$ pointwise isom. to $\phi \in \Lambda^{3} \mathbb{R}^{7}$.

The group G_{2}

For $\left(M^{7}, g, \nabla\right)$ riemannian, $\exists \varphi \in \Omega^{3}(M)$ pointwise isomorphic to ϕ, s.t. $\nabla \varphi=0 \Leftrightarrow \operatorname{Hol}(g) \subseteq G_{2}$.

Suppose $\varphi \in \Omega^{3}(M)$ pointwise isom. to $\phi \in \Lambda^{3} \mathbb{R}^{7} . \Rightarrow \exists$ metric g_{φ} on M.

The group G_{2}

For $\left(M^{7}, g, \nabla\right)$ riemannian, $\exists \varphi \in \Omega^{3}(M)$ pointwise isomorphic to ϕ, s.t.
$\nabla \varphi=0 \Leftrightarrow \operatorname{Hol}(g) \subseteq G_{2}$.
Suppose $\varphi \in \Omega^{3}(M)$ pointwise isom. to $\phi \in \Lambda^{3} \mathbb{R}^{7} . \Rightarrow \exists$ metric g_{φ} on M.

$$
\begin{aligned}
\text { If } d \varphi & =0 \\
d^{* \varphi} \varphi & =0
\end{aligned}
$$

Then $\operatorname{Hol}\left(g_{\varphi}\right) \subseteq G_{2}$.

The group G_{2}

For $\left(M^{7}, g, \nabla\right)$ riemannian, $\exists \varphi \in \Omega^{3}(M)$ pointwise isomorphic to ϕ, s.t.
$\nabla \varphi=0 \Leftrightarrow \operatorname{Hol}(g) \subseteq G_{2}$.
Suppose $\varphi \in \Omega^{3}(M)$ pointwise isom. to $\phi \in \Lambda^{3} \mathbb{R}^{7} . \Rightarrow \exists$ metric g_{φ} on M.

$$
\begin{aligned}
\text { If } d \varphi & =0 \\
d^{*} \varphi & =0
\end{aligned}
$$

Then $\operatorname{Hol}\left(g_{\varphi}\right) \subseteq G_{2}$.
Examples of (M, φ) with $\operatorname{Hol}\left(g_{\varphi}\right)=G_{2}$:

- Bryant ('85) - local, incomplete,
- Bryant-Salamon ('89) - complete, noncompact,
- Joyce ('95) - compact,
- Kovalev ('00) - compact.

Manifolds of Bryant and Salamon

Metrics of holonomy $\mathrm{Hol}\left(g_{\varphi}\right)=G_{2}$ on

- $M_{1}=\mathcal{S}\left(S^{3}\right)$,
- $M_{2}=\Lambda^{+}\left(S^{4}\right)$,
- $M_{3}=\Lambda^{+}\left(\mathbb{C P}^{2}\right)$

Manifolds of Bryant and Salamon

Metrics of holonomy $\mathrm{Hol}\left(g_{\varphi}\right)=G_{2}$ on

- $M_{1}=\mathcal{S}\left(S^{3}\right)$,
- $M_{2}=\Lambda^{+}\left(S^{4}\right)$,
- $M_{3}=\Lambda^{+}\left(\mathbb{C P}^{2}\right)$

Also, metric of holonomy $\operatorname{Hol}\left(g_{\phi}\right)=\operatorname{Spin}(7)$ on

- $M_{4}=\mathcal{S}^{-}\left(S^{4}\right)$.

Also discovered by Gibbons, Page, Pope in the study of bundle constructions of Ricci-flat metrics.

Construction of Bryant-Salamon

- complete metric with $\mathrm{Hol}\left(g_{\varphi}\right)=G_{2}$
- bundle construction
- on $\mathcal{S}\left(S^{3}\right)$, total space of spinor bundle over S^{3}.

Construction of Bryant-Salamon

- complete metric with $\mathrm{Hol}\left(g_{\varphi}\right)=G_{2}$
- bundle construction
- on $\mathcal{S}\left(S^{3}\right)$, total space of spinor bundle over S^{3}.
- principal coframe bundle
- set of all $u: T_{x} S^{3} \rightarrow \mathbb{R}^{3}$ for all $x \in S^{3}$
$S O(3) \longrightarrow \mathcal{F}$
\downarrow
S^{3}

Construction of Bryant-Salamon

- complete metric with $\mathrm{Hol}\left(g_{\varphi}\right)=G_{2}$
- bundle construction
- on $\mathcal{S}\left(S^{3}\right)$, total space of spinor bundle over S^{3}.
- principal coframe bundle
- set of all $u: T_{x} S^{3} \rightarrow \mathbb{R}^{3}$ for all $x \in S^{3}$
$S O(3) \longrightarrow \mathcal{F}$
\mathcal{F} admits forms
- ω - canonical \mathbb{R}^{3}-valued " soldering" form
- ϕ - Levi-Civita conn. 1-form.

Bryant-Salamon construction

Consider the spin double cover,
$S U(2) \longrightarrow \widetilde{\mathcal{F}}$

$$
\begin{gathered}
\downarrow \\
S^{3}
\end{gathered}
$$

Bryant-Salamon construction

Consider the spin double cover,

$$
S U(2) \longrightarrow \widetilde{\mathcal{F}}
$$

S^{3}
and associated vector bundle

$$
\mathcal{S}=(\widetilde{\mathcal{F}} \times \mathbb{H}) / S U(2)
$$

a rank 4 real vector bundle.

Total space of \mathcal{S} is non-compact and 7 dimensional.

Bryant-Salamon construction

Consider the spin double cover,

$$
S U(2) \longrightarrow \widetilde{\mathcal{F}}
$$

$$
\mathcal{S}=(\tilde{\mathcal{F}} \times \mathbb{H}) / S U(2)
$$

a rank 4 real vector bundle. S^{3}

Total space of \mathcal{S} is non-compact and 7 dimensional. The product $\widetilde{\mathcal{F}} \times \mathbb{H}$ admits

$$
\begin{aligned}
a & : \widetilde{\mathcal{F}} \times \mathbb{H} \rightarrow \mathbb{H} \quad \text { projection } \\
\alpha & =\text { da }-a \phi, \quad \mathbb{H}-\text { valued } 1-\text { form on } \widetilde{\mathcal{F}} \times \mathbb{H}
\end{aligned}
$$

Bryant-Salamon construction

Consider the forms

$$
\begin{aligned}
& \gamma_{1}=\omega^{123} \\
& \gamma_{2}=\omega^{1} \wedge\left(\alpha^{01}-\alpha^{23}\right)+\omega^{2} \wedge\left(\alpha^{02}-\alpha^{31}\right)+\omega^{3} \wedge\left(\alpha^{03}-\alpha^{12}\right)
\end{aligned}
$$

ω and α are equivariant, defined on $\widetilde{\mathcal{F}} \times \mathbb{H}$, but γ_{1}, γ_{2} are invariant and descend to \mathcal{S}.

Bryant-Salamon construction

Consider the forms

$$
\begin{aligned}
& \gamma_{1}=\omega^{123} \\
& \gamma_{2}=\omega^{1} \wedge\left(\alpha^{01}-\alpha^{23}\right)+\omega^{2} \wedge\left(\alpha^{02}-\alpha^{31}\right)+\omega^{3} \wedge\left(\alpha^{03}-\alpha^{12}\right)
\end{aligned}
$$

ω and α are equivariant, defined on $\widetilde{\mathcal{F}} \times \mathbb{H}$, but γ_{1}, γ_{2} are invariant and descend to \mathcal{S}. Then for functions f, g on \mathcal{S}, the form $\varphi=f^{3} \gamma_{1}+f g^{2} \gamma_{2}$ is pointwise isomorphic to $\phi \in \Lambda^{3} \mathbb{R}^{7}$.

Bryant-Salamon construction

Consider the forms

$$
\begin{aligned}
& \gamma_{1}=\omega^{123} \\
& \gamma_{2}=\omega^{1} \wedge\left(\alpha^{01}-\alpha^{23}\right)+\omega^{2} \wedge\left(\alpha^{02}-\alpha^{31}\right)+\omega^{3} \wedge\left(\alpha^{03}-\alpha^{12}\right)
\end{aligned}
$$

ω and α are equivariant, defined on $\widetilde{\mathcal{F}} \times \mathbb{H}$, but γ_{1}, γ_{2} are invariant and descend to \mathcal{S}. Then for functions f, g on \mathcal{S}, the form $\varphi=f^{3} \gamma_{1}+f g^{2} \gamma_{2}$ is pointwise isomorphic to $\phi \in \Lambda^{3} \mathbb{R}^{7}$.

Theorem (Bryant-Salamon)

For the functions

$$
f(r)=(1+r)^{1 / 3} \quad g(r)=2(1+r)^{-1 / 6}
$$

the form φ satisfies $d \varphi=0$ and $d^{* \varphi} \varphi=0$.

Bryant-Salamon construction

Consider the forms

$$
\begin{aligned}
& \gamma_{1}=\omega^{123} \\
& \gamma_{2}=\omega^{1} \wedge\left(\alpha^{01}-\alpha^{23}\right)+\omega^{2} \wedge\left(\alpha^{02}-\alpha^{31}\right)+\omega^{3} \wedge\left(\alpha^{03}-\alpha^{12}\right)
\end{aligned}
$$

ω and α are equivariant, defined on $\widetilde{\mathcal{F}} \times \mathbb{H}$, but γ_{1}, γ_{2} are invariant and descend to \mathcal{S}. Then for functions f, g on \mathcal{S}, the form $\varphi=f^{3} \gamma_{1}+f g^{2} \gamma_{2}$ is pointwise isomorphic to $\phi \in \Lambda^{3} \mathbb{R}^{7}$.

Theorem (Bryant-Salamon)

For the functions

$$
f(r)=(1+r)^{1 / 3} \quad g(r)=2(1+r)^{-1 / 6}
$$

the form φ satisfies $d \varphi=0$ and $d^{*} \varphi \varphi=0$. Furthermore, $\operatorname{Hol}\left(g_{\varphi}\right)=G_{2}$.

G_{2}-instantons

Recall : Self-dual Yang-Mills equations in 4-dimensions: $* F_{A}=F_{A}$.

G_{2}-instantons

Recall : Self-dual Yang-Mills equations in 4-dimensions: $* F_{A}=F_{A}$. Comes from the decomposition $\Lambda^{2} \mathbb{R}^{4}=\Lambda^{+}+\Lambda^{-}$. First example :

$$
A=\frac{\operatorname{lm}(x d \bar{x})}{1+|x|^{2}} \quad \text { on } \mathbb{R}^{4}
$$

G_{2}-instantons

Recall : Self-dual Yang-Mills equations in 4-dimensions: $* F_{A}=F_{A}$. Comes from the decomposition $\Lambda^{2} \mathbb{R}^{4}=\Lambda^{+}+\Lambda^{-}$. First example :

$$
A=\frac{\operatorname{lm}(x d \bar{x})}{1+|x|^{2}} \quad \text { on } \mathbb{R}^{4}
$$

On a G_{2}-manifold ($M^{7}, \varphi, g_{\varphi}$), have decomposition :

$$
\Lambda^{2} T^{*}=\Lambda_{7}^{2}+\Lambda_{14}^{2}
$$

For example : $\Lambda_{14}^{2}=\operatorname{ker}\left\{* \varphi \Lambda \cdot: \Lambda^{2} \rightarrow \Lambda^{6}\right\}$.

G_{2}-instantons

Recall : Self-dual Yang-Mills equations in 4-dimensions: $* F_{A}=F_{A}$. Comes from the decomposition $\Lambda^{2} \mathbb{R}^{4}=\Lambda^{+}+\Lambda^{-}$. First example :

$$
A=\frac{\operatorname{lm}(x d \bar{x})}{1+|x|^{2}} \quad \text { on } \mathbb{R}^{4}
$$

On a G_{2}-manifold ($M^{7}, \varphi, g_{\varphi}$), have decomposition :

$$
\Lambda^{2} T^{*}=\Lambda_{7}^{2}+\Lambda_{14}^{2}
$$

For example : $\Lambda_{14}^{2}=\operatorname{ker}\left\{* \varphi \Lambda \cdot: \Lambda^{2} \rightarrow \Lambda^{6}\right\}$.

Definition

A G_{2}-instanton is a connection A on a vector bundle $E \rightarrow M$ that satisfies (any of) :

- $F_{A} \in \Lambda_{14}^{2} \otimes \mathfrak{g}_{E}$
- $(* \varphi) \wedge F_{A}=0$
- $*\left(\varphi \wedge F_{A}\right)=F_{A}$.

Related constructions

- First definitions of instantons in higher dimensions, circa 1983, by Corrigan, Devchand, Fairlie and Nuyts,
- Donaldson and Thomas, GT in HD, 1996,

Related constructions

- First definitions of instantons in higher dimensions, circa 1983, by Corrigan, Devchand, Fairlie and Nuyts,
- Donaldson and Thomas, GT in HD, 1996,
- Monopoles on $\Lambda^{+}\left(S^{4}\right), \Lambda^{+}\left(\mathbb{C P}^{2}\right)$ constructed by Oliveira,
- Instantons on Nearly-Kähler manifolds and cones over them studied by Harland, Nölle, Ivanova, Lechtenfeld, Popov and collaborators,

Construction of Instantons

Consider the form $\mathfrak{s u}(2)$-valued form $A_{1}=\operatorname{Im}(a \bar{\alpha})$.

Construction of Instantons

Consider the form $\mathfrak{s u}(2)$-valued form $A_{1}=\operatorname{Im}(a \bar{\alpha})$.

- by analogy with $\operatorname{Im}(x d \bar{x})$ on \mathbb{R}^{4}
- defined on $\widetilde{\mathcal{F}} \times \mathbb{H}$ but descends to \mathcal{S}

Construction of Instantons

Consider the form $\mathfrak{s u}(2)$-valued form $A_{1}=\operatorname{Im}(a \bar{\alpha})$.

- by analogy with $\operatorname{Im}(x d \bar{x})$ on \mathbb{R}^{4}
- defined on $\widetilde{\mathcal{F}} \times \mathbb{H}$ but descends to \mathcal{S}

Consider connection of the form $\nabla=d+A$ for $A=f(r) \operatorname{lm}(a \bar{\alpha})$, where $f(r)$ depends only on the radius in the fibre directions.

Construction of Instantons

Consider the form $\mathfrak{s u}(2)$-valued form $A_{1}=\operatorname{Im}(a \bar{\alpha})$.

- by analogy with $\operatorname{Im}(x d \bar{x})$ on \mathbb{R}^{4}
- defined on $\widetilde{\mathcal{F}} \times \mathbb{H}$ but descends to \mathcal{S}

Consider connection of the form $\nabla=d+A$ for $A=f(r) \operatorname{lm}(a \bar{\alpha})$, where $f(r)$ depends only on the radius in the fibre directions. Then,

$$
F_{A}=f^{\prime} d r \wedge A_{1}+f d A_{1}+f^{2} A_{1} \wedge A_{1}
$$

Construction of Instantons

Consider the form $\mathfrak{s u}(2)$-valued form $A_{1}=\operatorname{Im}(a \bar{\alpha})$.

- by analogy with $\operatorname{Im}(x d \bar{x})$ on \mathbb{R}^{4}
- defined on $\widetilde{\mathcal{F}} \times \mathbb{H}$ but descends to \mathcal{S}

Consider connection of the form $\nabla=d+A$ for $A=f(r) \operatorname{lm}(a \bar{\alpha})$, where $f(r)$ depends only on the radius in the fibre directions. Then,

$$
\begin{aligned}
F_{A} & =f^{\prime} d r \wedge A_{1}+f d A_{1}+f^{2} A_{1} \wedge A_{1} \\
& =\left(r f^{\prime}+2 f-r f^{2}\right) \frac{\alpha \wedge \bar{\alpha}}{2}-\left(f^{\prime}+f^{2}\right) \frac{a \bar{\alpha} \wedge \alpha \bar{a}}{2}-\frac{1}{2} a \Omega \bar{a} .
\end{aligned}
$$

Construction of Instantons

Consider the form $\mathfrak{s u}(2)$-valued form $A_{1}=\operatorname{Im}(a \bar{\alpha})$.

- by analogy with $\operatorname{Im}(x d \bar{x})$ on \mathbb{R}^{4}
- defined on $\widetilde{\mathcal{F}} \times \mathbb{H}$ but descends to \mathcal{S}

Consider connection of the form $\nabla=d+A$ for $A=f(r) \operatorname{lm}(a \bar{\alpha})$, where $f(r)$ depends only on the radius in the fibre directions. Then,

$$
\begin{aligned}
F_{A} & =f^{\prime} d r \wedge A_{1}+f d A_{1}+f^{2} A_{1} \wedge A_{1} \\
& =\left(r f^{\prime}+2 f-r f^{2}\right) \frac{\alpha \wedge \bar{\alpha}}{2}-\left(f^{\prime}+f^{2}\right) \frac{a \bar{\alpha} \wedge \alpha \bar{a}}{2}-\frac{1}{2} a \Omega \bar{a} .
\end{aligned}
$$

and

$$
(* \varphi) \wedge F_{A}=\left(\tau\left(f^{\prime}+f^{2}\right)-\frac{\sigma}{4} f\right) \Phi
$$

where $\sigma=\frac{16}{(1+r)^{2 / 3}}$ and $\tau=-12(1+r)^{1 / 3}$ are the coefficient functions of $* \varphi$ from Bryant-Salamon.

Construction of instantons

$A=f A_{1}$ satisfies $* \varphi \wedge F_{A}=0$ if and only if

$$
f^{\prime}+f^{2}+\frac{1}{3} \frac{1}{r+1} f=0 .
$$

Riccati-type equation, can be solved explicitly.

Construction of instantons

$A=f A_{1}$ satisfies $* \varphi \wedge F_{A}=0$ if and only if

$$
f^{\prime}+f^{2}+\frac{1}{3} \frac{1}{r+1} f=0 .
$$

Riccati-type equation, can be solved explicitly.

Theorem

For the function

$$
f(r)=\frac{2}{3(r+1)+C(r+1)^{1 / 3}}
$$

$A=f(r) \operatorname{lm}(a \bar{\alpha})$ defines a G_{2}-instanton on a trivial \mathbb{H}-bundle over \mathcal{S}.

Asymptotic behaviour

S^{3} has symmetric metric: $S^{3}=\left(S^{3} \times S^{3}\right) / S^{3}$, and

$$
\mathcal{S}=\left(S^{3} \times S^{3} \times \mathbb{H}\right) / S^{3}
$$

Asymptotic behaviour

S^{3} has symmetric metric : $S^{3}=\left(S^{3} \times S^{3}\right) / S^{3}$, and

$$
\mathcal{S}=\left(S^{3} \times S^{3} \times \mathbb{H}\right) / S^{3}
$$

with metric

$$
g_{\gamma}=3\left(1+r^{2}\right)^{2 / 3} \omega^{2}+4\left(1+r^{2}\right)^{-1 / 3}\left(d r^{2}+r^{2}\left(\theta_{3}-\phi\right)^{2}\right) .
$$

Asymptotic behaviour

S^{3} has symmetric metric : $S^{3}=\left(S^{3} \times S^{3}\right) / S^{3}$, and

$$
\mathcal{S}=\left(S^{3} \times S^{3} \times \mathbb{H}\right) / S^{3}
$$

with metric

$$
g_{\gamma}=3\left(1+r^{2}\right)^{2 / 3} \omega^{2}+4\left(1+r^{2}\right)^{-1 / 3}\left(d r^{2}+r^{2}\left(\theta_{3}-\phi\right)^{2}\right) .
$$

Here, ω, ϕ can be written in terms of the Maurer-Cartan forms $\theta_{1}, \theta_{2}, \theta_{3}$ from the three S^{3} factors.

Asymptotic behaviour

S^{3} has symmetric metric: $S^{3}=\left(S^{3} \times S^{3}\right) / S^{3}$, and

$$
\mathcal{S}=\left(S^{3} \times S^{3} \times \mathbb{H}\right) / S^{3}
$$

with metric

$$
g_{\gamma}=3\left(1+r^{2}\right)^{2 / 3} \omega^{2}+4\left(1+r^{2}\right)^{-1 / 3}\left(d r^{2}+r^{2}\left(\theta_{3}-\phi\right)^{2}\right)
$$

Here, ω, ϕ can be written in terms of the Maurer-Cartan forms $\theta_{1}, \theta_{2}, \theta_{3}$ from the three S^{3} factors. For $\rho=3\left(1+r^{2}\right)^{1 / 3}$, is written as

$$
g_{\gamma}=\frac{1}{1-\left(\frac{3}{\rho}\right)^{3}} d \rho^{2}+\frac{4}{9} \rho^{2}\left(1-\left(\frac{3}{\rho}\right)^{3}\right)\left(\theta_{3}-\phi\right)^{2}+\frac{1}{3} \rho^{2} \omega^{2}
$$

Asymptotic behaviour

S^{3} has symmetric metric: $S^{3}=\left(S^{3} \times S^{3}\right) / S^{3}$, and

$$
\mathcal{S}=\left(S^{3} \times S^{3} \times \mathbb{H}\right) / S^{3}
$$

with metric

$$
g_{\gamma}=3\left(1+r^{2}\right)^{2 / 3} \omega^{2}+4\left(1+r^{2}\right)^{-1 / 3}\left(d r^{2}+r^{2}\left(\theta_{3}-\phi\right)^{2}\right)
$$

Here, ω, ϕ can be written in terms of the Maurer-Cartan forms $\theta_{1}, \theta_{2}, \theta_{3}$ from the three S^{3} factors. For $\rho=3\left(1+r^{2}\right)^{1 / 3}$, is written as

$$
g_{\gamma}=\frac{1}{1-\left(\frac{3}{\rho}\right)^{3}} d \rho^{2}+\frac{4}{9} \rho^{2}\left(1-\left(\frac{3}{\rho}\right)^{3}\right)\left(\theta_{3}-\phi\right)^{2}+\frac{1}{3} \rho^{2} \omega^{2}
$$

Asymptotic, as $\rho \rightarrow \infty$, to the cone metric,

$$
g_{c o n}=d \rho^{2}+\rho^{2}\left(\frac{4}{9}\left(\theta_{3}-\phi\right)^{2}+\frac{1}{3} \omega^{2}\right)
$$

le, cone over the Nearly Kähler metric on $S^{3} \times S^{3}$.

Asymptotic behaviour

Definition

A Nearly Kähler 6-manifold is an almost-Hermitian manifold $\left(M^{6}, J, \varpi\right)$ with $\Omega=\Omega_{1}+i \Omega_{2} \in \Omega^{3,0}(M)$ satisfying

$$
\begin{aligned}
d \Omega_{2} & =-2 \varpi^{2} \\
d \varpi & =3 \Omega_{1}
\end{aligned}
$$

Asymptotic behaviour

Definition

A Nearly Kähler 6 -manifold is an almost-Hermitian manifold $\left(M^{6}, J, \varpi\right)$ with $\Omega=\Omega_{1}+i \Omega_{2} \in \Omega^{3,0}(M)$ satisfying

$$
\begin{aligned}
d \Omega_{2} & =-2 \varpi^{2} \\
d \varpi & =3 \Omega_{1}
\end{aligned}
$$

$\left(S^{3} \times S^{3}, g_{n k}\right)$ is Nearly Kähler with $S^{3} \times S^{3} \times S^{3}$-symmetry. Ω and ϖ defined in terms of ω, ϕ, θ_{3}, etc.

Asymptotic behaviour

Definition

A Nearly Kähler 6-manifold is an almost-Hermitian manifold ($\left.M^{6}, J, \varpi\right)$ with $\Omega=\Omega_{1}+i \Omega_{2} \in \Omega^{3,0}(M)$ satisfying

$$
\begin{aligned}
d \Omega_{2} & =-2 \varpi^{2} \\
d \varpi & =3 \Omega_{1}
\end{aligned}
$$

$\left(S^{3} \times S^{3}, g_{n k}\right)$ is Nearly Kähler with $S^{3} \times S^{3} \times S^{3}$-symmetry. Ω and ϖ defined in terms of ω, ϕ, θ_{3}, etc.

Definition

$E \rightarrow M$ a bundle on a $N K 6$-manifold. A connection A is Hermitian-Yang-Mills if the curvature satisfies

$$
\begin{aligned}
F_{A} \wedge \varpi^{2} & =0 \\
F_{A} \wedge \Omega & =0
\end{aligned}
$$

Connection at infinity

- Same definition as in Kähler case, that $F_{A} \in \Lambda_{0}^{1,1}$ is primitive.
- Case of Bryant's pseudo-holomorphic bundles on AC-manifolds.

Connection at infinity

- Same definition as in Kähler case, that $F_{A} \in \Lambda_{0}^{1,1}$ is primitive.
- Case of Bryant's pseudo-holomorphic bundles on AC-manifolds.

The differential form A_{1} satisfies

$$
A_{1}=\operatorname{Im}(a \bar{\alpha})=-r^{2} g_{3}\left(\theta_{3}-\phi\right) g_{3}^{-1}
$$

(well-defined on $\left(S^{3} \times S^{3} \times S^{3}\right) / S^{3}$)

Connection at infinity

- Same definition as in Kähler case, that $F_{A} \in \Lambda_{0}^{1,1}$ is primitive.
- Case of Bryant's pseudo-holomorphic bundles on AC-manifolds.

The differential form A_{1} satisfies

$$
A_{1}=\operatorname{Im}(a \bar{\alpha})=-r^{2} g_{3}\left(\theta_{3}-\phi\right) g_{3}^{-1}
$$

(well-defined on $\left(S^{3} \times S^{3} \times S^{3}\right) / S^{3}$) and

$$
A=f(r) A_{1}=\frac{-2\left(\left(\frac{\rho}{3}\right)^{3}-1\right)}{\frac{1}{9} \rho^{3}+\frac{C}{3} \rho} g_{3}\left(\theta_{3}-\phi\right) g^{-1}
$$

for $\rho=3\left(1+r^{2}\right)^{1 / 3}$.

Connection at infinity

Theorem

(1) As $\rho \rightarrow \infty$, the connection A converges to

$$
\widetilde{A}=\frac{-2}{3} g_{3}\left(\theta_{3}-\phi\right) g_{3}^{-1}
$$

- Connection on trivial bundle over $S^{3} \times S^{3}$, pulled back to cone $\mathbb{R}^{+} \times S^{3} \times S^{3}$.
(2) \widetilde{A} is Hermitian-Yang-Mills connection on $S^{3} \times S^{3}$.

Results for Spin(7)

- Connection A on $E \rightarrow X^{8}$ is $\operatorname{Spin}(7)$ - instanton if $\Phi \wedge F_{A}=* F_{A}$,

Results for Spin(7)

- Connection A on $E \rightarrow X^{8}$ is $\operatorname{Spin}(7)$ - instanton if $\Phi \wedge F_{A}=* F_{A}$,
- Bryant-Salamon construction :

$$
X=(\tilde{\mathcal{F}} \times \mathbb{H}) / \operatorname{Spin}(4)=\mathcal{S}^{-}\left(S^{4}\right)
$$

admits complete $\operatorname{Spin}(7)$-holonomy metric from 4-form Φ,

Results for Spin(7)

- Connection A on $E \rightarrow X^{8}$ is $\operatorname{Spin}(7)$ - instanton if $\Phi \wedge F_{A}=* F_{A}$,
- Bryant-Salamon construction :

$$
X=(\tilde{\mathcal{F}} \times \mathbb{H}) / \operatorname{Spin}(4)=\mathcal{S}^{-}\left(S^{4}\right)
$$

admits complete $\operatorname{Spin}(7)$-holonomy metric from 4-form Φ,

$$
\mathcal{F} \times \mathbb{H} \rightarrow X
$$

is a non-trivial principal $S U(2)$-bundle over X, with connection form
ϕ (half LC connection from S^{4}).

Results for Spin(7)

- Consider connections of the form $A=\phi+f(r) A_{2}$ for $A_{2}=\operatorname{Im}(\bar{a} \alpha)$ where $f(r)$ is a function of the radial direction in the \mathbb{H}-fibres,

Results for Spin(7)

- Consider connections of the form $A=\phi+f(r) A_{2}$ for $A_{2}=\operatorname{Im}(\bar{a} \alpha)$ where $f(r)$ is a function of the radial direction in the \mathbb{H}-fibres,

Theorem

For the function

$$
f(r)=\frac{1}{r\left(1+D(1+r)^{3 / 5}\right)}+\frac{D(2 r+5)}{5 r(1+r)^{2 / 5}\left(1+D(1+r)^{3 / 5}\right)}
$$

$A=\phi+f(r) A_{2}$ defines a Spin(7)-instanton on bundle $\mathcal{F} \times \mathbb{H}$ over X.

