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Background

Gauge theory ∼ A(E ), where Cr → E → M

Eg. M = Y 3
R, CS : A(E )→ R

CS(A) =
∫
Y 3 tr(AdA + 2

3A
3), crit point: FA = 0

Floer-Morse theory on A(E )  H∗CS(Y ,E )” = ”H
∞
2 (A(E ))

Eg. M = X 4
R, Donaldson theory {F+ = 0}/∼=
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Background

Eg. M = Y 3
C (CY3), ∃ CSC, w/ crit point: F 0,2 = 0 (i.e. holo bdl)

 H∗DT3
(Y ,E ) s.t χ

(
H∗DT3

(Y ,E )
)

= Donaldson-Thomas invariant

Question: M = X 4
C (CY4) ?
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Background

CY4: (X , g , ω,Ω)

 

∗4 : Ω0,2(X )→ Ω0,2(X )

α ∧ ∗4α = |α|2Ω

Coupled with bundle (E , h)

∗4 : Ω0,2(X ,EndE )→ Ω0,2(X ,EndE )

with ∗24 = 1  DT4-equation{
F 0,2
+ = 0 i .e. F 0,2 + ∗4F 0,2 = 0

F ∧ ω3 = 0
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DT4 moduli spaces and their virtual cycles

Definition

DT4 moduli spaceMDT4
c , {DT4 − solutions}/∼= ⊆ B.

Question: Donaldson-type inv ?

Need: (1) Compactness (2) Orientation (3) Transversality

Issue (2), i.e.

L , det
(
(∧topExt2+(E ,E ))−1 ⊗ ∧topExt1(E ,E )

) ∼=MDT4
c × R ?
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DT4 moduli spaces and their virtual cycles

Theorem (C-Leung)

Given X : compact simply connected CY4 with H3(X ,Z) = H3(X ,Z) = 0,
U(r) bundle E → X, then L over B is trivial.

Above conditions hold for complete intersections in product of projective
spaces
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DT4 moduli spaces and their virtual cycles

Compactness issue, note:

F 0,2 = 0⇒ F 0,2
+ = 0, ch2(E ) ∈ H2,2(X ,C)

Lemma (Lewis)

Converse is true. In particular, if every Gieseker semi-stable sheaf is a slope

stable bundle i.e. Mshf
c =Mbdl

c 6= ∅, thenMDT4
c is compact.

In this case, MDT4
c
∼=Mbdl

c as SETs.
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DT4 moduli spaces and their virtual cycles

Transversality issue, use Li-Tian’s virtual cycle

Theorem (C-Leung)

AssumeMshf
c =Mbdl

c 6= ∅, L is oriented. Then

∃ [MDT4
c ]vir ∈ Hr (B,Z).

The cycle is inv under deformation of complex str of X .

r = 2− χ(X ,EndE ) is the virtual dim of MDT4
c .
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DT4 moduli spaces and their virtual cycles

Recall: Mbdl
c 6= ∅ ⇒ Mbdl

c
∼=MDT4

c as SETs.

Q: whether the analytic strs are the same ?

Recall: analytic str of Mbdl
c is described by Kuranishi theory, i.e.

∃ κ : H0,1(X ,EndE )→ H0,2(X ,EndE ),

s.t Mbdl
c
∼= κ−1(0) locally.

Claim: MDT4
c
∼=Mbdl

c as sets but NOT necessarily as real analytic spaces
possibly with non-reduced structures.

This is based on the following Kuranishi type thm for MDT4
c
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DT4 moduli spaces and their virtual cycles

Theorem (C-Leung)

IfMbdl
c 6= ∅, local Kuranishi model ofMDT4

c at dA is

κ+ : H0,1(X ,EndE )
κ //H0,2(X ,EndE )

π+ //H0,2
+ (X ,EndE ) ,

where κ is a Kuranishi map forMbdl
c .

Furthermore, ∃ closed imbedding between analytic spaces possibly with
non-reduced structures

Mbdl
c ↪→MDT4

c

which is also homeomorphism between topological spaces.

Yalong Cao (IMS, CUHK) Donaldson-Thomas theory for CY4 Aug 13, 2014 10 / 27



DT4 moduli spaces and their virtual cycles

This motivates the general compactification of MDT4
c .

In general, we hope to find an analytic space S and a homeomorphism

Mshf
c → S

s.t. S ∼= κ−1+ (0) locally at F ∈Mshf
c , where

κ+ : Ext1(F ,F)→ Ext2+(F ,F).

We call such S the generalized DT4 moduli space and denote it MDT4

c .

In general, MDT4

c may come from gluing local models.
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DT4 moduli spaces and their virtual cycles

Easiest case: If Mshf
c =Mbdl

c 6= ∅, MDT4

c exists and MDT4

c =MDT4
c .

Next easiest case: When MDT4

c
∼=Mshf

c as analytic space?

Eg 1 (C-Leung)

If Mshf
c is smooth, (i.e. all Kuranishi maps are zero), then MDT4

c exists

and MDT4

c
∼=Mshf

c .

Eg 2 (C-Leung)

If X = KY , with Y compact Fano 3-fold and supp(F) ⊆ Y , then MDT4

c

exists and MDT4

c
∼=Mshf

c .

Yalong Cao (IMS, CUHK) Donaldson-Thomas theory for CY4 Aug 13, 2014 12 / 27



DT4 moduli spaces and their virtual cycles

Easiest case: If Mshf
c =Mbdl

c 6= ∅, MDT4

c exists and MDT4

c =MDT4
c .

Next easiest case: When MDT4

c
∼=Mshf

c as analytic space?

Eg 1 (C-Leung)

If Mshf
c is smooth, (i.e. all Kuranishi maps are zero), then MDT4

c exists

and MDT4

c
∼=Mshf

c .

Eg 2 (C-Leung)

If X = KY , with Y compact Fano 3-fold and supp(F) ⊆ Y , then MDT4

c

exists and MDT4

c
∼=Mshf

c .

Yalong Cao (IMS, CUHK) Donaldson-Thomas theory for CY4 Aug 13, 2014 12 / 27



DT4 moduli spaces and their virtual cycles

Easiest case: If Mshf
c =Mbdl

c 6= ∅, MDT4

c exists and MDT4

c =MDT4
c .

Next easiest case: When MDT4

c
∼=Mshf

c as analytic space?

Eg 1 (C-Leung)

If Mshf
c is smooth, (i.e. all Kuranishi maps are zero), then MDT4

c exists

and MDT4

c
∼=Mshf

c .

Eg 2 (C-Leung)

If X = KY , with Y compact Fano 3-fold and supp(F) ⊆ Y , then MDT4

c

exists and MDT4

c
∼=Mshf

c .

Yalong Cao (IMS, CUHK) Donaldson-Thomas theory for CY4 Aug 13, 2014 12 / 27



DT4 moduli spaces and their virtual cycles

Easiest case: If Mshf
c =Mbdl

c 6= ∅, MDT4

c exists and MDT4

c =MDT4
c .

Next easiest case: When MDT4

c
∼=Mshf

c as analytic space?

Eg 1 (C-Leung)

If Mshf
c is smooth, (i.e. all Kuranishi maps are zero), then MDT4

c exists

and MDT4

c
∼=Mshf

c .

Eg 2 (C-Leung)

If X = KY , with Y compact Fano 3-fold and supp(F) ⊆ Y , then MDT4

c

exists and MDT4

c
∼=Mshf

c .

Yalong Cao (IMS, CUHK) Donaldson-Thomas theory for CY4 Aug 13, 2014 12 / 27



DT4 moduli spaces and their virtual cycles

More generally, we have

Proposition (C-Leung)

If ∀F ∈Mshf
c , ∃ VF s.t

(
Ext2(F ,F),QSerre

) ∼= (T ∗VF ,Qstd) and
Image(κF ) ⊆ VF , where

QSerre : Ext2(F ,F)⊗ Ext2(F ,F)→ Ext4(F ,F) ∼= C

is the Serre duality pairing, Qstd is the standard pairing between dual

spaces, thenMDT4

c exists andMDT4

c
∼=Mshf

c .
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DT4 moduli spaces and their virtual cycles

In the above examples, MDT4

c exists and MDT4

c
∼=Mshf

c .

What’s more,
∃ [MDT4

c ]vir ∈ Hr (Mshf
c ).

This coincides with our earlier def of virtual cycles when semi-stable
sheaves are stable bundles.
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Axioms of DT4 invariants

In general, virtual dim r 6= 0, need µ-map  DT4 invariants.

µ : H∗(X )⊗ Z[x1, x2, ..., ]→ H∗(Mshf
c )

µ(γ,P) = P(c1(F), c2(F), ..., )/γ

where F is the universal sheaf.

Take (γ,P)  DT4-inv=
∫
[MDT4

c ]vir
µ(γ,P).

Since we only define DT4-inv in several cases with different assumptions,
to make all cases consistent, we propose several axioms that DT4-invs
should satisfy.
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Axioms of DT4 invariants

In general, virtual dim r 6= 0, need µ-map  DT4 invariants.

µ : H∗(X )⊗ Z[x1, x2, ..., ]→ H∗(Mshf
c )

µ(γ,P) = P(c1(F), c2(F), ..., )/γ

where F is the universal sheaf.

Take (γ,P)  DT4-inv=
∫
[MDT4

c ]vir
µ(γ,P).

Since we only define DT4-inv in several cases with different assumptions,
to make all cases consistent, we propose several axioms that DT4-invs
should satisfy.

Yalong Cao (IMS, CUHK) Donaldson-Thomas theory for CY4 Aug 13, 2014 15 / 27



Axioms of DT4 invariants

In general, virtual dim r 6= 0, need µ-map  DT4 invariants.

µ : H∗(X )⊗ Z[x1, x2, ..., ]→ H∗(Mshf
c )

µ(γ,P) = P(c1(F), c2(F), ..., )/γ

where F is the universal sheaf.

Take (γ,P)  DT4-inv=
∫
[MDT4

c ]vir
µ(γ,P).

Since we only define DT4-inv in several cases with different assumptions,
to make all cases consistent, we propose several axioms that DT4-invs
should satisfy.

Yalong Cao (IMS, CUHK) Donaldson-Thomas theory for CY4 Aug 13, 2014 15 / 27



Axioms of DT4 invariants

In general, virtual dim r 6= 0, need µ-map  DT4 invariants.

µ : H∗(X )⊗ Z[x1, x2, ..., ]→ H∗(Mshf
c )

µ(γ,P) = P(c1(F), c2(F), ..., )/γ

where F is the universal sheaf.

Take (γ,P)  DT4-inv=
∫
[MDT4

c ]vir
µ(γ,P).

Since we only define DT4-inv in several cases with different assumptions,
to make all cases consistent, we propose several axioms that DT4-invs
should satisfy.

Yalong Cao (IMS, CUHK) Donaldson-Thomas theory for CY4 Aug 13, 2014 15 / 27



Axioms of DT4 invariants

Axioms: Given a polarized CY4

(
X ,O(1)

)
, c ∈ Heven(X ,Q) and an

orientation o(L), the DT4-inv is a map

DT4(X ,O(1), c , o(L)) : Sym∗
(
H∗(X ,Z)⊗ Z[x1, x2, ...]

)
→ Z,

such that

(1) Orientation reversed

DT4(X ,O(1), c , o(L)) = −DT4(X ,O(1), c,−o(L))

(2) Deformation invariance

DT4(X0,O(1)|X0 , c, o(L0)) = DT4(X1,O(1)|X1 , c , o(L1))(
Xt ,O(1)

)
, t ∈ [0, 1] deformation of cpx structures.
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Axioms of DT4 invariants

(3) Vanishing for negative virtual dimension

DT4(X ,O(1), c , o(L)) = 0

if 2− χ(F ,F) < 0, where χ(F ,F) is determined by topology of X and c .

(4) Vanishing for certain choice of c

DT4(X ,O(1), c , o(L)) = 0,

if any one of the following two conditions is satisfied,
(i) c |H4(X ,Q) has no component in H0,4(X ) and c /∈

⊕4
i=0H

i ,i (X );

(ii) c ∈
⊕4

i=0H
i ,i (X ), ∃ ϕ ∈ H1(X ,TX ) such that ϕy

(
c |H2,2(X ,Q)

)
6= 0

(5) Vanishing for compact hyper-Kähler manifolds

DT4(X ,O(1), c , o(L)) = 0

if Hol(X ) = Sp(2).
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Axioms of DT4 invariants

(6) DT4/DT3 correspondence
For any compact Fano 3-fold

(
Y ,OY (1)

)
,

DT4(KY , π
∗OY (1), c , o(O)) = DT3(Y ,OY (1), c ′),

π : KY → Y is projection, c = (0, c |H2
c (KY ) 6= 0, ∗, ∗, ∗).

In this setup, sheaves in Mshf
c is of type ι∗(F), ι : Y → KY the zero

section and c ′ = ch(F) ∈ Heven(Y ) uniquely determined by c . o(O)
denotes the natural complex orientation.

(7) Normalizations
If virtual cycles exist (mentioned before)

DT4-inv =< µ(, ), [MDT4

c ]vir >
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Computational examples (DT4/GW correspondence)

For smooth genus zero curve C ↪→ X with β = [C ] ∈ H2(X ,Z),
ch(IC ) = (1, 0, 0,−PD(β),−1).

Proposition (C-Leung)

Given compact CY4: X , c = (1, 0, 0,−PD(β),−1) ∈ Heven(X ).

AssumeMshf
c = {IC} ∼=M

GW
0,0 (X , β) smooth,

C : smooth imbedded g = 0 curve. Then L has natural orientation,MDT4

c

exists andMDT4

c
∼=MGW

0,0 (X , β). Furthermore,

(1) if Hol(X ) = SU(4), then

[MDT4

c ]vir = [MGW
0,0 (X , β)]vir ,

(2) if Hol(X ) = Sp(2), then [MDT4

c ]vir = 0 and

[MDT4

c ]virred = [MGW
0,0 (X , β)]virred .
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Computational examples (T ∗P2)

X = T ∗P2, count sheaves w/ supp(F) ⊆ P2 (scheme theoretically)

Proposition (C-Leung)

ι∗ :Mshf
c (P2)

∼= //Mshf
c,P2(T ∗P2) , ι : P2 → T ∗P2

Then L has natural orientation and [Mshf
c,P2(T ∗P2)]vir = 0. Furthermore,

(1) when rk(F) ≥ 2, [Mshf
c,P2(T ∗P2)]virred = 0,

(2) when rk(F) = 1,

[Mshf
c,P2(T ∗P2)]virred =

{
1 if c = (1, ∗, 0)
χ(Hilbn

(
P2)
)

if c = (1, 0,−n)
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Computational examples (Li-Qin’s example)

By W.P.Li and Z.Qin, we have examples when Mshf
c =Mbdl

c .

Eg. X generic smooth hyperplane section in P1 × P4 of (2, 5) type

Chern class = [1 + (−1, 1)|X ] · [1 + (1, 0)|X ],

Then Mshf
c (LXr ) (Gieseker moduli space w.r.t LXr = OP1×P4(1, r)|X ) is

smooth and consists of slope-stable bdls only.

(1) If r ≥ 2, then MDT4

c
∼=Mshf

c (LXr ) ∼= P5, [MDT4

c ]vir = [P5].

(2) If r = 1, then MDT4

c =Mshf
c (LXr ) = ∅, [MDT4

c ]vir = 0.

Remark

Wall-crossing phenomenon exists in DT4 theory
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Computational examples (Li-Qin’s example)

More generally, we have

Proposition (C-Leung)

X a generic smooth hyperplane section in P1 × P4 of (2, 5) type

c = [1 + (−1, 1)|X ] · [1 + (ε1 + 1, ε2 − 1)|X ], ε1, ε2 = 0, 1

Mshf
c (LXr ) is the Gieseker moduli space, LXr = OP1×P4(1, r)|X

(1) If 15(2−ε2)
6+5ε1+2ε2

< r < 15(2−ε2)
ε1(1+2ε2)

, thenMDT4

c =Mshf
c (LXr ) = Pk ,

[MDT4

c ]vir = [Pk ], where k = (1 + ε1)

(
6− ε2

4

)
.

(2) If 0 < r < 15(2−ε2)
6+5ε1+2ε2

, thenMDT4

c =Mshf
c (LXr ) = ∅,

[MDT4

c ]vir = 0.
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Computational examples (ideal sheaves of one point)

For ideal sheaves of one point, i.e. ch(IP) = (1, 0, 0, 0,−1).

Proposition (C-Leung)

Let X be a compact CY4, c = (1, 0, 0, 0,−1), thenMDT4

c
∼= X.

(1) If Hol(X ) = SU(4), then

[MDT4

c ]vir = ±PD
(
c3(X )

)
∈ H2(X ,Z).

(2) If Hol(X ) = Sp(2), then

[MDT4

c ]vir = 0 ∈ H1(X ,Z).

Furthermore, [MDT4

c ]virred = 0 ∈ H2(X ,Z).
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Some further directions

We also define the equivariant DT4-inv for ideal sheaves of curves In(X , β)
on any toric CY4, X by virtual localization formula.

We do not need to glue local models in this case as the torus fixed loci of
In(X , β) are isolated. Furthermore, the orientability is easy to achieve and
we thus get the definition without any assumption.

The DT4/GW correspondence in toric CY4 cases would be interesting to
study.
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Relations with Borisov-Joyce’s work

A related work was done by Dennis Borisov and Dominic Joyce (see
homepage of Borisov, preprint 2014). They used local ’Darboux charts’ in
the sense of Brav, Bussi and Joyce, the machinery of homotopical algebra
and C∞-algebraic geometry to get a compact derived C∞-scheme with
the same underlying topological structure as the Gieseker moduli space of
stable sheaves.

In our language, their results proved the existence of generalized DT4

moduli spaces (C∞-scheme version) in general. Furthermore, they defined
the virtual fundamental class of the above derived C∞-scheme.
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Relations with Borisov-Joyce’s work

In fact, BBJ’s local ’Darboux theorem’ mentioned above is important for
their general gluing construction. We have a gauge theoretical proof of
this ’Darboux theorem’ for Gieseker moduli spaces of stable sheaves using
gauge theory and Seidel-Thomas twists.

We then introduce a weaker condition on their local ’Darboux charts’ to
include local models induced from DT4 equations. It turns out that the
weaker condition is already sufficient for their gluing requirement which
then indicates the equivalence of their virtual fundamental classes and
DT4 virtual cycles defined above.
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THE END

Thank you for your attention !
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